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Abstract
Key message The machine learning algorithm extreme gradient boosting can be employed to address the issue of long 
data gaps in individual trees, without the need for additional tree-growth data or climatic variables.
Abstract The susceptibility of dendrometer devices to technical failures often makes time-series analyses challenging. Result-
ing data gaps decrease sample size and complicate time-series comparison and integration. Existing methods either focus 
on bridging smaller gaps, are dependent on data from other trees or rely on climate parameters. In this study, we test eight 
machine learning (ML) algorithms to fill gaps in dendrometer data of individual trees in urban and non-urban environments. 
Among these algorithms, extreme gradient boosting (XGB) demonstrates the best skill to bridge artificially created gaps 
throughout the growing seasons of individual trees. The individual tree models are suited to fill gaps up to 30 consecutive 
days and perform particularly well at the start and end of the growing season. The method is independent of climate input 
variables or dendrometer data from neighbouring trees. The varying limitations among existing approaches call for cross-
comparison of multiple methods and visual control. Our findings indicate that ML is a valid approach to fill gaps in individual 
trees, which can be of particular importance in situations of limited inter-tree co-variance, such as in urban environments.
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Introduction

The growth of trees on intra-annual level has been the sub-
ject of numerous studies ranging from urban tree growth 
(Lindén et al. 2016; Moser-Reischl et al. 2019) over experi-
mental orchard settings (Corell et al. 2014) to forest tree 
analyses (King et al. 2013; Ziaco and Biondi 2018; Salomón 
et al. 2022; Zhang et al. 2024). Whilst undisturbed time 
series of dendrometer data over multiple years are desirable, 
many datasets contain longer periods of missing data. The 
primary cause of data loss is irregular physical monitoring 
due to the accessibility of the sites (e.g. remoteness of sites, 
time/cost minimization or travel restrictions during pandem-
ics), which can result in battery power or logger failure, full 

data storage capacity or dendrometers at maximum. Fur-
thermore, other technical damages like moisture intrusion, 
animal bites, extreme weather events (e.g. storm damage) or 
vandalism can result in missing values over multiple days to 
months. The presence of prolonged phases of missing data 
can impede the ability to conduct a comprehensive analysis 
on a given dataset, particularly when these periods coincide 
with the growing season, and can reduce sample size (e.g. in 
King et al. 2013; Corell et al. 2014; Dulamsuren et al. 2023).

To date, the most common approaches for addressing 
gaps in dendrometer data have been incorporated into R 
packages like treenetproc (Haeni et al. 2020; Knüsel et al. 
2021), or dendRoAnalyst (Aryal et al. 2020). The imputation 
approaches are primarily based on linear or spline interpo-
lation and are constrained to a short period of consecutive 
missing values (e.g. 24 measuring points) in order to achieve 
acceptable results (Aryal et al. 2020; Knüsel et al. 2021). In 
addition to these methods, Aryal et al. (2020) introduced 
a linear-regression-based network interpolation approach, 
which assumes that all individuals of a tree species at one 
location share similar stem growth variability. For the suc-
cessful gap filling, this approach requires neighbouring trees 
with no missing values and high co-variance. Luković et al. 
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(2022) tested different deep neural network architectures 
for gap filling and found that the combination of long short 
memory (LSTM) and convolutional neural networks (CNNs) 
performed better when an input of stem radius data and mul-
tiple climatic parameters, including temperature, relative 
humidity, solar radiation, and vapour pressure deficit was 
given. While the results of this study were promising, the 
authors suggested further tests of other machine learning 
(ML) methods and on other data.

In this study, we present a ML approach to test multiple 
supervised algorithms, datasets and feature combinations 
to reconstruct missing growth data from dendrometers. The 
novelty of this approach lies in its ability to fill data gaps 
exceeding 12 h (> 24 measuring points) of individual trees, 
when no supplementary data from other trees or climatic 
parameters are available. Furthermore, we include an evalu-
ation of the multicollinearity of input variables and provide 
a straightforward scheme to be reproduced. The method 
was not only tested on stem growth data, but also on raw 
dendrometer data to expand the method to broader research 
applications.

Methods

Study location and data collection

The city of Mainz is located in western Germany (50.0° N, 
8.3° E) and is defined by a temperate climate with warm 
summers and without a dry season (cfb, Beck et al. 2018b). 

The average yearly mean temperature and the average pre-
cipitation sum between 1991 and 2020 were 10.8 °C and 
579.3  mm, respectively (Mainz–Lerchenberg Station: 
Deutscher Wetterdienst 2024).

Norway maple (Acer platanoides L.) and London plane 
trees (Platanus x hispanica Münchh.) are common urban 
tree species in Europe. In Mainz, these maple and plane spe-
cies make up for 32.5% and 8% of the total urban tree popu-
lation (Landeshauptstadt Mainz 2024 (status of 2023)). In 
February 2019, six maple and six plane trees were selected 
at different locations throughout the urban and surrounding 
non-urban areas of the city. On each location, point den-
drometers (Ecomatik GmbH DR2), temperature and rela-
tive humidity (RH) sensors (BMC Solutions GmbH HOBO 
U23-001 Pro v2 data loggers) were installed (Fig. 1). All 
sensors measured in a 30-min interval. For this study, all 
measurements in the common period from April 2019 to 
October 2023 were used.

Preparation of sensor and dendrometer data

First, the temperature data were subjected to quality control 
procedures based on the methods described in Eischeid et al. 
(1995), Beck et al. (2018a) and Barraro et al. (2022). The 
raw dendrometer data were examined using the R package 
treenetproc (Haeni et al. 2020; Knüsel et al. 2021) to iden-
tify and remove any erroneous measurements such as shifts 
in the data (here called jumps) related to technical failures. 
Here, the temperature data were used to assure no removal 
of frost indicated jumps. Consecutive missing values due 

Fig. 1  a Map of Mainz showing the locations in the urban (blue tri-
angles) and non-urban (yellow triangles) areas. Triangles pointing 
upwards show maple trees and triangles pointing downwards show 
plane trees. Size of the triangles equal the size of the unsealed area 
around the trees relative to minimum and maximum (this figure has 
been prepared using European Union’s Copernicus Land Monitoring 

Service information; https:// doi. org/ 10. 2909/ 3bf54 2bd- eebd- 4d73- 
b53c- a0243 f2ed8 62 and Google Satellite Image (2024)). b Example 
of a point dendrometer. c Example of a full set up including a Ste-
venson screen. d Example of a non-urban maple tree. e Example of 
an urban plane tree (photo credits: D. Thimm (b, c); S. Schöfl (d, e))

https://doi.org/10.2909/3bf542bd-eebd-4d73-b53c-a0243f2ed862
https://doi.org/10.2909/3bf542bd-eebd-4d73-b53c-a0243f2ed862
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to erroneous data in the temperature or dendrometer data, 
which did not exceed 24 measuring points (i.e. 12 h), were 
gap filled using standard linear interpolation (Haeni et al. 
2020; Knüsel et al. 2021). To extract tree growth from the 
cleaned dendrometer data, the zero-growth model (Zweifel 
et al. 2016) was applied. Additional information on the trees 
included metadata such as the area of unsealed soil  [m2], 
the diameter at breast height [cm] or the tree height [mm] 
(Table 1). In areas where trees were growing in a completely 
unsealed environment, a maximum value of unsealed area 
was set at 144  m2.

To find the optimal approach for gap filling, a series of 
tests was conducted utilising a combination of different data-
sets (Table 1) and methods (Table S1). Two hourly-resolved 
datasets for each species, maple and plane, were built includ-
ing measurements from all locations (datasets #1–2). Four 
additional datasets were constructed by splitting the species-
specific ones into urban and non-urban locations per species 
(datasets #3–6). Furthermore, these datasets were utilized to 
investigate the effects of data size and hyperparameter tuning 
on the model performances. Hyperparameter tuning enables 
data scientists to adjust model hyperparameters for optimal 
performance, thereby avoiding overfitting to the training 
data (Géron 2019). Additionally, 12 datasets representing 
the individual trees were subject to testing (summarized in 
#7–8). The presence of multicollinearity among predictive 
variables was evaluated using a variance inflation factor 
threshold of 5 (Dormann et al. 2013). Correlated variables 
were excluded, leaving a specific set of predictors for each 
dataset (hereafter called features Xi): day of the year (DOY), 
year, hour, and area (set as constant value per tree). In the 
non-urban datasets, tree height was included as predictor, as 
VIF values were below five. All mentioned data processing 
steps were computed in R 4.2.2 (R Core Team 2021).

Machine learning implementation

First, the outputs from the zero-growth models were con-
trolled for incorrect values, namely negative values or 

growth at the end (DOY > 304) or start (DOY < 60) of 
each year. Manual data quality control is required to detect 
incorrect growth values or artefacts in winter, as bark cell 
degradation is not taken into account in the zero-growth 
model (Zweifel et al. 2016). Matrices comprising the fea-
tures Xi, and the growth labels y were built and rows with 
missing dendrometer data were excluded during model 
training process. Subsequently, X and y were split into 
training (80%) and test (20%) subsets using stratified sam-
pling of the features ‘year’ and ‘hour’ to ensure that the 
distribution of data in the subsets is balanced. Afterwards, 
all features were normalized using z-transformation. The 
parameters of the z-transformation of the training subset 
were employed to normalize the test subset data and the 
input data in periods of missing values.

To find the best model, datasets #1–6 were fitted to 
eight supervised ML algorithms for regression problems 
and tested though repeated 10-fold cross-validation (10 
repeats) on the training subsets before hyperparameter 
tuning (see Table S1 for a list of the algorithms). To evalu-
ate the performance of these ML regression models, the 
root mean squared error (RMSE) and the adjusted R2 were 
calculated. Significant differences in the performances 
of the algorithms were checked with the Friedmans test 
(Rainio et al. 2024). RMSE results between two models 
were analysed using the Mann–Whitney U test. The best 
performing algorithms were hyperparameter tuned using a 
10-fold cross-validation and Bayesian Optimization Search 
(iterations = 70) (Bischl et al. 2023). Afterwards, tuned 
models were evaluated on the test subsets. The effects of 
the hyperparameter tuning and its necessity for gap filling 
were analysed. Permutation feature importance (PFI) was 
used to analyse the features and their predictive power by 
calibrating and validating the model for each permutation 
(boot = 50). The PFI value is here defined as the mean dif-
ference between the original and the permuted R2 of the 
model (Breiman 2001; Schwarz et al. 2024). A ‘random’ 
feature was included to provide a statistical baseline for 
random performance decline.

Table 1  Tested datasets for 
gap filling. Xi present the 
used features for prediction 
(DOY = day of year, 
area = unsealed area around 
the trees). Average diameter 
at breast height (DBH) and 
average unsealed area are 
given. VIF is the maximum 
variance inflation factor after 
multicollinearity tests and 
feature selection

# Dataset Xi Average DBH [cm] Average 
unsealed area 
 [m2]

VIF

1 Maple DOY, year, hour, area 35.00 69.20  ≤ 1.06
2 Plane DOY, year, hour, area 55.22 52.14  ≤ 1.06
3 Urban Maple DOY, year, hour, area 30.37 15.24  ≤ 1.06
4 Urban Plane DOY, year, hour, area 58.67 13.22  ≤ 1.06
5 Non-urban Maple DOY, year, hour, area, tree height 39.63 123.474  ≤ 1.08
6 Non-urban Plane DOY, year, hour, area, tree height 51.77 90.75  ≤ 1.08
7 6 ind. Maple datasets DOY, year, hour 24.5 – 42.8 1.82 – 144  ≤ 1.07
8 6 ind. Plane datasets DOY, year, hour 41.5 – 88.7 2.77 – 144  ≤ 1.07
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A process scheme was developed following the necessary 
steps and functions for gap filling dendrometer data (Fig. 2). 
The functions created for this project, along with detailed 
explanations and data to replicate the process, are available 
at GitHub (https:// github. com/ ESKuhl/ DM_ GF_ XGB). The 
functions are based on the scikit-learn package (Pedregosa 
et al. 2011) and are intended to simplify the application. 
The initial stage of the process is the data preparation, dur-
ing which the zero-growth model is applied (Zweifel et al. 
2016; Haeni et al. 2020; Knüsel et al. 2021) and corrected 

for erroneous values in the winter months. A dataset associ-
ated with the growth data must be constructed with continu-
ous values in the features ‘DOY’, ‘year’ and ‘hour’. For the 
functions to work properly, a variable called ‘Label’ must be 
added, which includes the output of the zero-growth model 
(i.e. growth labels y) with data gaps. Once the data have been 
prepared, they are fitted to an ML algorithm in the second 
step using the function testxgb(), which returns the perfor-
mance results and the model. If the model performance on 
the test subset indicates a high degree of accuracy, the gaps 

Fig. 2  Gap filling process scheme using extreme gradient boosting to fill long data gaps and needed functions and packages. Green functions are 
implemented for this study and are available on GitHub

https://github.com/ESKuhl/DM_GF_XGB
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in the dendrometer data can be filled in the third step using 
the model.predict() function of scikit-learn.

Gap filling model performance

To assess the functionality of this approach across different 
phases of the growing season, artificial gaps of 30 consecu-
tive days were created on datasets #3–8 for the start (April 
 16th–May  15th), middle (June  1st–30th) and end (September 
 1st–30th) of the growing season for each year of observa-
tion (2019–2023). The resulting 15 subsets, comprising the 
three-period/5-years combinations for each original dataset, 
were individually fitted to the ML algorithms and tested, 
yielding 240 models for comparison. Moreover, to bench-
mark the new approach against existing methods, network 
interpolation from Aryal et al. (2020) and spline interpo-
lation were applied to the same artificial gaps, if the data 
allowed for it.

All model fittings, runs and analyses were conducted 
with Python 3.9.19 and the packages scikit-learn (Pedregosa 
et al. 2011), scikit-optimize (Head et al. 2018) and xgboost 
(Chen and Guestrin 2016). The analysis can be replicated 
in R by utilizing the package reticulate (Ushey et al. 2024), 
which enables the execution of Python functions in R studio 
when Python and the necessary packages are installed on 
the device (for further details see: https:// rstud io. github. io/ 
retic ulate/).

Results and discussion

Algorithm selection and model evaluation

The eight algorithms significantly differed in their perfor-
mances across all datasets (Table S2 for datasets #3–6). In 
all runs, nonlinear algorithms outperformed linear models 
and exhibited higher adjusted R2 and lower RMSE mean 
values. The three best performing untuned algorithms were 
identified as random forest (RF, Breiman 2001), extreme 
gradient boosting (XGB, Chen and Guestrin 2016) and 
k-nearest-neighbour (kNN, Fix and Hodges 1951). Although 
the linear models performed significantly worse relative to 
the nonlinear ones, RMSE values did not differ significantly 
between each other. We selected the best three algorithms 
(RF, XGB and kNN) for further hyperparameter tuning. 
Ridge regression (Hoerl and Kennard 2000) was addition-
ally included as fourth algorithm to assess the impact of 
hyperparameter tuning on a linear model.

After hyperparameter tuning, the RMSE values for kNN 
and XGB showed either minimal improvement or no change 
(see Table S3 for datasets #3–6). The RMSE values for RF 
increased marginally after tuning from 0.00 to a maximum 
RMSE of 0.07. Ridge regression RMSE values ranged 

between 0.56 and 0.96 and could not be improved by tuning. 
Model performances before and after the tunings revealed no 
significant differences. The species-specific models showed 
similar results. The results of the test subsets of these models 
(Table S4) demonstrated that the models exhibit comparable 
performances on the test subset data and on the training 
subset data after tuning. When the algorithms were fitted 
to individual tree data without hyperparameter tuning, the 
results showed similarly low RMSE values.

The computation time required for hyperparameter tuning 
is substantially growing with the dataset size. While the time 
to fit the data without hyperparameter tuning has a maximum 
of a few minutes, hyperparameter tuning can take from 20 
min (individual small datasets, approx. 25,000 datapoints) 
to 8 h (model #3–6, approx. 90,500 data points) and exceeds 
24 h when the species-specific datasets are tuned (180,000 
data points). Due to the increased computation time, which 
did not significantly improve model performances, the sug-
gested procedure (Fig. 2) did not include hyperparameter 
tuning.

Among the predictor variables included in the datasets, 
the day of the year (‘DOY’) was the most important feature 
of the grouped tree models (Fig. 3). The PFI values exceeded 
1 for the ‘DOY’ variable in all grouped tree models, with 
the highest values observed in the plane tree models. This 
indicates that the permuted ‘DOY’ models are poorly fit-
ting with negative R2 values. In the maple tree-growth mod-
els, the feature ‘area’ achieved a higher ranking than in the 
plane-tree-based models. The feature ‘year’ also had a sig-
nificant predictive value for all four algorithms. Despite this, 
an increase in model error was not significantly observed for 
the features’tree height’ or ‘hour’, as their PFI values were 
not exceeding the PFI values from the introduced random 
feature. Additional tests including various climatic param-
eters revealed no significant PFI values for these parameters, 
which is example wise shown for VPD in Fig. 3 and demon-
strates that these variables are not essential for gap recon-
struction using this ML approach.

All four algorithms were trained as individual and 
grouped tree models on the datasets with the consecutive 
gaps at the start, middle and end of the growing seasons. 
No hyperparameter tuning was applied. The average perfor-
mance of these models on their test subsets highlights the 
superiority of the individual tree models (Table S5). The 
comparison between the four algorithms clearly showed that 
in most of the cases, the decision-tree-based algorithms out-
performed kNN and ridge regression. The performance of 
ridge regression and kNN was found to be significantly dif-
ferent to XGB and RF, respectively (p < 0.01), with XGB 
and RF being similar in their performance (p > 0.1). All indi-
vidual tree models performed on average similarly good than 
on their training data. The grouped tree models, on the other 
hand, had higher average RMSE values on the test subset 

https://rstudio.github.io/reticulate/
https://rstudio.github.io/reticulate/


1562 Trees (2024) 38:1557–1567

data compared to the training subset data. This is an indi-
cator for generalization errors in the grouped tree models. 
Although these models performed well on the test data with 
hyperparameter tuning (Table S4), it is probable that the 
grouped tree models are dependent on the tuning to prevent 
overfitting on the training subset data. The diverse growth 
patterns of multiple trees might have forced the models to 
learn detailed patterns, which are characteristically for the 
training data, but are too specific for a general application 
to unseen data (Géron 2019).

As RF and XGB showed similar performance on the test 
subsets, a Mann–Whitney U test validated that the RMSE 
values of the artificial gap predictions were not significant 
different between the algorithms (p > 0.01) (Fig. S1). These 
results indicate that XGB is the optimal algorithm for this 
gap-filling approach. The algorithm is known for its high 
scalability, short computation time, the ability to handle 
unbalanced datasets and its iterative learning process (Chen 
and Guestrin 2016; Fatima et al. 2023). Compared to ran-
domly build decision trees in RF, XGB grounds on a gra-
dient boosting algorithm (Friedman 2001) and iteratively 
builds an ensemble model of decision trees. The objective 
of each iteration is to minimize the loss function. The model 
optimization stops, when the performance of the training or 

the validation subset, a 20% subset from the training sub-
set, no longer improves. Consequently, overfitting can be 
mitigated without the need for hyperparameter tuning (Ying 
2019).

Evaluation on artificial gaps

Both individual and grouped tree models predicted data for 
the artificially created growth gaps to evaluate the perfor-
mances on consecutive missing values. RMSE values for the 
various gaps were calculated using the excluded observa-
tions (Figs. 4 and 5). The values for the grouped tree mod-
els in Figs. 4d and 5d were generally higher than for the 
individual tree models in a–c. Despite the performances of 
the grouped models, gap filling in the middle of the grow-
ing season showed higher variance in RMSE values than 
at the start and middle for the individual tree models. Best 
predictions of the individual tree models were observed for 
the gaps at the end of the growing season. In this period, the 
performances in the grouped models were worse compared 
to all other periods. It is likely, that XGB was unable to pre-
dict growth with the same degree of accuracy when multiple 
trees with differing growth behaviours and diverse grow-
ing season lengths were given as training data. From the 

Fig. 3  Example of permutation 
feature importance (PFI) results 
for the three most important fea-
tures DOY (day of year), year 
and area of the models derived 
from the urban (blue) and non-
urban (yellow) multi tree data-
sets #3–6 (Table 1). The figure 
contains an additional example 
of the PFI values from climatic 
features like the vapour pressure 
deficit (VPD), when these are 
included in the models
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grouped tree models, the urban models had higher RMSE 
values than the non-urban models, which could indicate 
more coherent tree-growth patterns between non-urban 
trees. Urban environments have shown high heterogeneity 
of tree-growth influencing conditions between urban loca-
tions and compared to non-urban environments (Iakovoglou 

et al. 2001; Cedro and Nowak 2006; Moser-Reischl et al. 
2019; Lv et al. 2024).

The distribution of RMSE values for each seasonal gap 
demonstrated that network interpolation exhibited simi-
lar performance to the individual tree models during the 
middle of the growing season but had significantly higher 

Fig. 4  RMSE results for the predictions on all different phases (Start, Middle and End of growing season) and all years (2019–2023) for the 
urban individual (a–c)) grouped tree models (d))

Fig. 5  RMSE results for the predictions on all different phases (Start, Middle and End of growing season) and all years (2019–2023) for the non-
urban individual (a–c)) grouped tree models (d))
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RMSE values during the beginning of the growing season 
(Fig. 6). At the end of the growing season, the variance in 
RMSEs was considerably smaller for the network inter-
polation, although the number of gaps, where network 
interpolation could be applied, was limited (22.4%). For 
the start and middle of the season, it was possible to apply 
network interpolation to 16 and 26% of the artificially cre-
ated gaps, respectively. Spline interpolation showed higher 
variance in RMSEs for the middle and end of the grow-
ing season. Significant differences (p < 0.01) were found 
between the individual tree and spline approach for the 
start of the growing season. For all approaches, the mid 
of the growing season means were higher than for the start 
and end.

In Fig. S2, the plane growth reconstruction for gaps at an 
urban example location for the year 2022 was highlighted in 
comparison to existing methods. The location and year were 
chosen as examples for the purpose of facilitating a more 
comprehensive comparison between methods, given that 
network interpolation could not be applied to all examples. 
Applied to the plane trees, the ML approach worked for all 
phases of the growing season with RMSE values ≤ 0.15 and 
the other approaches had higher RMSEs in most cases. The 
most striking visual observations were those, when spline 
interpolation predicted negative growth for the start of the 
season in 2022 and when the network interpolation recon-
structed reduced growth for mid of growing season with an 
RMSE of 0.55.

The predictions for the maple tree at the same urban 
location (Fig. S3) revealed some shortcomings of the ML 
approach. The network interpolation approach made the 
most accurate predictions for the middle and end of the 
growing season. However, at the start of the growing season 
network interpolation did not capture the onset on the grow-
ing season, while the spline interpolation captured it best. 
Due to the way spline interpolation operates, this approach 
was unable to capture the characteristic stepwise growth in 
any gaps compared to the other approaches although RMSE 
values were generally low.

When the scheme is applied to true gaps of the datasets, 
the results clearly demonstrate the strength of the ML mod-
els to reconstruct long gaps in dendrometer data (Fig. 7). 
At visual inspection, the individual tree models were able 
to comprehensibly fill these gaps. It should be noted that 
the predictions for the non-urban plane tree (Fig. 7d) did 
not display reasonable growth values for the year 2019. The 
model predicted a reduction in growth values with increas-
ing time. In such instances, we recommend that these erro-
neous predictions should be deleted and alternative methods 
like spline interpolation should be considered for these val-
ues. Users are encouraged to test various method on their 
capability to reconstruct data gaps. We recommend that any 
method used should be accompanied by a visual control of 
the reconstructed data.

The proposed ML method represents a complementary 
tool to existing methods as it enables the gap filling for 

Fig. 6  Comparison of RMSE 
values of the artificial gaps, 
when the gaps are filled with the 
individual tree models (green), 
spline interpolation (blue) or 
network interpolation (orange). 
On each boxplot, the red bar 
indicates the median, bottom 
and top edges indicate the  25th 
and  75th percentiles; the whisk-
ers extend to all data points 
except outliers (drawn as “ + ”). 
The median RMSE values are 
given at the top of the figure. 
Highly significant (p > 0.01, 
Mann–Whitney U test) are the 
differences for the start of the 
growing season
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individuals of a tree species. Consequently, the necessity 
for neighbouring trees with no gaps in the dendrometer 
data is negated. The findings indicate that individual tree 
models are capable of filling large data gaps. The applica-
tion to actual gaps revealed that the models were capable 
of predicting reasonable values of growth even in gaps 
exceeding 30 days that span the transition between growth 
periods (start, middle, end) (Fig. 7). The low RMSE values 
(Fig. 6) suggest that the individual tree models can predict 
growth at the start and end of the growing season with high 
confidence. This allows, for example, a gapless analysis of 
the onset and cessation of tree growth in consecutive years. 
The ML method is not dependent on any climatic features. 
All features induced into the model are based on temporal 
variables and are hence available at any time. Features were 
controlled for multicollinearity before the application of any 
ML regression algorithm and dendrometer data has been 
carefully checked for quality. When the quality is poor, it is 
reflected in the generalization error and predictions made 
with these models are correspondingly unsatisfactory (Gei-
ger et al. 2021; Briesch et al. 2022).

The application of this method, however, did not work 
for predicting raw dendrometer data and the models did not 
perform as good as the existing methods (Fig. S4). This is 
likely due to cyclical fluctuations of raw data due to stem 
growth, shrinkage and extension being more complex than 
continuously increasing stem growth data. Still, the intro-
duced method offers a key advantage in handling long data 

gaps, especially when methods relying on sufficient data are 
not suitable (i.e. due to a lack of data from neighbouring 
trees). Future work should be undertaken to develop and test 
machine learning methods, which not only work for indi-
vidual trees and independent from climatic variables but 
can also address positive and negative fluctuations in raw 
dendrometer data.

Conclusion

We here introduced a novel method based on ML to fill 
dendrometer data gaps of individual trees exceeding 24h. 
Unlike previous approaches, our method is not dependent on 
climatic features or additional tree-growth data from neigh-
bouring trees. Furthermore, we provided a comprehensive 
scheme that enables the replication of the method for other 
dendrometer data. The results showed that XGB-based mod-
els are capable of reconstructing tree-growth derived from 
dendrometer data at the start, middle and end of the grow-
ing season. Nonetheless, the comparison between methods 
revealed that no single universal method exists to fill long 
data gaps perfectly. The process of gap filling is complex 
and must be applied with caution. A visual evaluation of 
the predicted data is essential for any given case. Further 
research should explore the combination of methods and the 
functionality of the introduced ML approach on other tree 
species and environments.
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