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significance in over 60% of tests. Correlation inflation is 
greater when: (1) the climate-proxy relationship is weaker; 
(2) comparison periods are shorter; and (3) the length of 
seasonal windows is longer. Autocorrelation in the proxy 
records does not appear to have a major effect. These find-
ings indicate that caution should be exercised when comput-
ing high numbers of correlations with limited observations. 
We provide tables listing correlation inflations for precipita-
tion- and temperature-sensitive tree-ring chronologies that 
can inform interpretations of significance.

Keywords Dendroclimatology · Signal–noise · Daily 
resolution · Significance · Uncertainty

Introduction

Tree rings represent a formidable proxy of pre-instrumen-
tal climate variability and centennial-to-millennial length 
records of tree growth form the basis for our understanding 
of Common Era climate (IPCC 2021). The foundation of 
dendrochronology is an external forcing on the limits of tree 
productivity, often observed to be climatic in nature (Fritts 
1976; Schweingruber 1988). The relationship between such 
limiting factors and tree-ring chronologies, the average and 

Abstract Correlating tree-ring parameters with daily 
resolved climate data is becoming increasingly common 
for understanding the complex relationships between tree 
growth and the surrounding environment. However, with 
an increased number of calculated correlations, there is 
an inherent risk of spurious significance. In this study, we 
present an analysis using synthetic weather and tree-ring 
data mimicking the statistical properties of ten real-world 
sites across Europe to quantify the extent to which numer-
ous comparisons may inflate maximum correlations. Com-
parisons of different tree-ring proxies, considering vary-
ing overlapping period lengths and seasons, revealed 95th 
percentile correlation differences reaching 0.25 by chance. 
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standardized growth of multiple trees from a single location, 
has facilitated the reconstruction of summer temperatures 
(Esper et al. 2002; Anchukaitis et al. 2017; Büntgen et al. 
2024), drought and precipitation (Cook et al. 2015; Teje-
dor et al. 2017; Stahle et al. 2020), and streamflow (Wood-
house et al. 2012; Chen et al. 2023; Torbenson et al. 2023a). 
These reconstructions have often been based on a simple 
relationship between tree growth and monthly- or seasonally 
resolved climate data (Cook and Kairiukstis 1990).

As the length and availability of daily resolved climate 
data, such as precipitation and temperature, has increased, 
the use of such variables to define “optimum” climate sig-
nals in tree-ring parameters have likewise become a more 
common practice (Caprio et al. 2003; Ziaco and Liang 2019; 
Howard et al. 2021). Comparing ring width and density 
measurements, tree-ring stable isotopes, and variability in 
quantitative wood anatomy to sub-monthly climate data has 
been further facilitated by the development of user-friendly 
computer packages (Jevšenak and Levanič 2018; Jevšenak 
2020). While these advances undoubtedly have improved 
our understanding of the multi-faceted relationship between 
atmospheric conditions and biological activity (Jevšenak 
2019), the statistical and practical significances of correla-
tion also become increasingly difficult to interpret. Tree ring 
proxies are tested against daily climatic records using shift-
ing temporal windows with lengths ranging from a few days 
up to several months. This approach generates thousands 
of climatic time series that can be compared to single tree-
ring proxies. Several other factors, such as multiple tree-ring 
parameters and temporal autocorrelation, may further influ-
ence the analysis of significance. However, the increased 
number of calculated correlations not only risks an overes-
timation of tree ring-climate relationships, but also influ-
ences the interpretation of changing signal strengths when 
this type of analysis is performed for different periods.

The multiple comparisons problem represents a long-
standing issue in statistics, with its origins in nineteenth 
century mathematics (Boole 1847). Fundamental to the issue 
is an exaggerated risk of type I error, in which a relationship 
is assumed to be significant based on an arbitrary p value 
but is false (Sokal and Rohlf 1981; Genovese et al. 2006). 
Advances have been made since the 1800s to develop cor-
rection techniques, including those outlined by Bonferroni 
(1937) and Šidák (1967). However, the inclusion of such 
corrections in dendroclimatology has been rare but see Meko 
and Woodhouse (2005) for a commendable example. The 
Bonferroni approach to correcting statistical significance has 
often been considered conservative (Conneely and Boehnke 
2007), with an increased risk of type II errors, i.e., rejecting 
hypotheses that are true (Feise 2002). This may particularly 
occur when data are non-orthogonal, and other methods 
have been suggested for the ecological sciences (Peres-
Neto 1999; Moran 2003; Nakagawa 2004), including the 

False Discovery Rate (FDR) introduced by Benjamini and 
Hochberg (1995). As the number of calculated correlations 
exceeds the thousands, traditional correction techniques may 
become unviable.

The analysis presented here is tailored to assess the poten-
tial impacts that multiple comparisons can have on dendro-
climatology. Using synthetic time series of both the pre-
dictor tree-ring data and predicted and climate target data, 
we quantify the relative component of correlation values 
that can be expected to occur by chance from thousands of 
comparisons. The results are not meant to question previous 
interpretations of climate-tree growth relationships based 
on daily records but rather provide a methodological sup-
port for assessing significance of daily climate data correla-
tions. We derive generalized values from our simulations 
applicable to dendroclimatic studies using daily data. We 
additionally quantify the difference in correlations stemming 
from natural climate variability and discuss how they can be 
accounted for when interpreting comparisons of tree-ring 
records and daily resolved climate data.

Materials and methods

In this study, we produced synthetic data that mimic proxy 
and target variables found in a traditional dendroclimatic 
setting. The analyses rely on simulated time series, but real-
world examples are used to infer practical meaning of the 
results. A general month-to-multi-month precipitation or 
temperature signal was assumed (based on real-world obser-
vations), and daily synthetic data and tree-ring series were 
derived using the characteristics of these observations.

Tree‑ring data, gridded climate observations, 
and baseline relationships

Ten tree-ring records from the European continent, recently 
developed or publicly available through the International 
Tree-Ring Data Bank (ITRDB; Zhao et al. 2019), were 
selected for analysis (Table 1; Fig. 1). Five of the records 
display statistically significant Pearson’s correlations 
(r = 0.45 to 0.60) with growing season precipitation totals 
and five with maximum temperatures. The tree-ring data 
include several different species and variables but share a 
common period of 1930–2011. Total ring-width (TRW) rep-
resents the most common tree-ring variable in our dataset, 
but adjusted latewood width  (LWa; Meko and Baisan 2001), 
maximum density (MXD), and a stable isotope series were 
also included. Raw measurements for each parameter were 
standardized and detrended using an age-dependent spline 
(Cook and Peters 1981) to produce site chronologies. For the 
 LWa chronology, adjustments were performed on detrended 
individual series rather than the averaged chronology (Meko 
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and Baisan 2001; Torbenson et al. 2016). The stable oxy-
gen isotope record (δ18O) did not contain a significant age-
related trend and was therefore not detrended (Urban et al. 
2021). The final chronologies for analyses represent the 
average growth/variability of all series in their respective 
site collection.

For each selected tree-ring chronology, data from the 
closest point in the gridded E-OBS network (v.23.1e / 0.25° 
spatial resolution; Cornes et al. 2018) were extracted. Daily 
values of precipitation and temperature for 1950–2020 were 
used as a baseline of climate variability at each location, 
with the exception of the Pefkas site (Greece) for which 
continuous data only exist for 1950–2004. The daily climate 

data were averaged into monthly and seasonal values for the 
initial comparison with the tree-ring data. Climate signals in 
the tree-ring chronologies were assessed through Pearson’s 
correlation for the longest possible overlap with the monthly 
and seasonally averaged E-OBS data for each respective 
chronology. The month/season chosen does not necessarily 
represent the highest possible tree ring-climate relationship 
exhibited at any given site but provides a range of values 
from real-world settings. All relationships were positive 
(Table 2), with the exception for the Czech δ18O chronology 
that displayed negative correlations with temperature—as is 
expected for the relationship between δ18O and temperature 
(Torbenson et al. 2023b). Spearman’s correlations were also 
calculated for each record.

Simulation of synthetic data based on real‑world 
observations

Synthetic precipitation and maximum temperature time 
series of daily resolution were produced using the WeaGETS 
weather generator (Chen et al. 2010, 2012). Daily precipita-
tion, minimum temperature, and maximum temperature data 
from E-OBS were entered into the generator to simulate the 
frequency of days with precipitation and the magnitude of 
each day, as well as distributions of maximum temperature. 
Daily precipitation totals for 71-year periods were generated 
and summed to monthly and seasonal totals. The model was 
run as a 3rd order Markov chain using a Gamma distribu-
tion for precipitation, no smoothing of resulting precipita-
tion, and any daily value > 0.1 mm considered as a day with 
precipitation. WeaGETS does not consider leap years, and 
February 29th non-zero precipitation totals (when they 
occurred) were split evenly onto February 28th and March 
1st. Because most European tree-ring records sensitive to 
hydroclimatic variability display the maximum correlation 

Table 1  General characteristics and site locations of tree-ring data used in the analyses, with the corresponding study in which the data was first 
presented

Nat. = Country code, Lat./lon. = latitude/longitude in ° north/east for the locations of sites

General characteristics Site name Nat Species Variable Lat Lon Season Study

Precipitation Koblenz DE QURO TRW 50.36 7.61 JJ This study
Pefkas EL PINI TRW 37.96 22.40 AMJ Touchan et al. (2014)
Eketånga SE PISY LWa 56.65 12.77 July This study
Weinviertel AT QURO TRW 48.50 16.40 JJA Karanitsch-Ackerl et al. (2019)
Puzz Atelli FR PIHA TRW 42.14 9.12 JJA Touchan et al. (2017)

Temperature Torneträsk SE PISY TRW 68.22 19.83 July Homfeld et al. (2024)
Beinn Bhreac UK PISY TRW 57.03 –3.03 JA Rydval et al. (2017)
Val di Sole IT PICE MXD 46.42 10.69 JAS Cerrato et al. (2019)
Czechia CZ QUSP δ18O N/A N/A July Büntgen et al. (2021)
Gerber ES PIUN MXD 42.39 0.58 AM Büntgen et al. (2024)

Fig. 1  Map indicating locations of five precipitation-sensitive chro-
nologies (blue) and five temperature-sensitive chronologies (red) in 
Europe
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with summer precipitation (St George and Ault 2014), leap 
years are assumed to play a negligible role in the analysis.

Each tree-ring chronology was decomposed into recon-
structed components (RCs) through singular spectrum analy-
sis (SSA; Ghil et al. 2002), which allowed for the decom-
posing of a time series into spectral components of varying 
frequencies (Vautard et al. 1992). A window (M) of 20 years 
was used which is larger than that used by St George and 
Ault (2011) for which M = 15 as the intention was not to 
extract the strongest periodicities but to capture as complete 
spectral characteristics of the tree-ring series as possible. 
Nevertheless, M falls well within 1/3rd of the record length 
of consideration (i.e., 82 years; 1930–2011) and the result-
ing spectral components are statistically robust. Sinus waves 
of periodicities corresponding to the 20 resulting RCs were 
resampled according to their respective weight (normalized 
eigenvalue). These RCs were then added to the normalized 
WeaGETS generated weather data averaged for the target 
season (here after referred to as the assigned signal time-
series; ASn), e.g., JJA, and linked to each corresponding 
 PTRn. All daily values for ASn were retained to facilitate 
further comparisons with windows of differing number of 
days. The WeaGETS generated data were weighted (depend-
ing on the length of comparison, see below), to produce 
pseudo tree-ring series (PTRs) that retained the spectral 
properties of the original chronology. The resulting series 
were scaled to have the same mean and variance as the origi-
nal tree-ring data. The PTRs  (PTR1…n) were correlated with 
their respective assigned signal time-series (AS1, …, n) to 
assure that Pearson’s or Spearman’s correlations (here after 
referred to as the assigned correlation; Ax) fell within ten 
points (+ /– 0.05) of the real-world example correlation, e.g., 
for a chronology exhibiting r = 0.53 with local precipitation, 
only PTRs correlating from 0.48 to 0.58 with the WeaGETS 
output were considered. Any PTR displaying a correlation 
outside this range was discarded. To assure that the spectral 
properties of the final PTRs were not significantly biased 
by the assigned signal, the power spectra of any given PTR 
was compared to that of the original tree-ring chronology. 
The discrete Fourier transform was computed for both 
series and used to produce a periodogram. A 95% confi-
dence interval around the spectrum was calculated using 
the chi-squared distribution (Bloomfield 1976). Any PTR 
that displayed non-overlapping confidence intervals below 
20-year periodicities was likewise discarded. The full proce-
dure was repeated with new WeaGETS output until 10,000 
pairs (AS1, …, 10,000 and  PTR1, …, 10,000, with all daily values 
for each AS series retained) had been obtained for each of 
the ten chronologies (Fig. 2).

For the five temperature-sensitive chronologies, an 
additional modification was made to WeaGETS-gener-
ated maximum temperatures to include potential trends 
and low-frequency behavior in the data. Variability of any Ta
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low frequency (> 10-year periodicities) in the first ten RCs 
(i.e., the components that explained the highest amount 
of variance; RC1-10 for M = 20) of the instrumental tem-
perature data for 1950–2020 were considered. The origi-
nal generated time-series were averaged to the temporal 
window of interest (e.g., JJA) and normalized, with any 
low frequency components identified added in the same 
way as for the PTRs. The difference between (a) the modi-
fied series and (b) the original generated series, season-
ally averaged, was added to the original generated data 
to produce daily temperature series that incorporated the 
low frequency components of the target data. Compari-
sons between Ax and the maximum correlation (Mx) for 
temperature-sensitive chronologies were calculated with 
the low frequency adjusted temperature series.

Analysis of correlation inflation

Synthetic precipitation totals/temperature means for win-
dows of 10-X days were calculated, with X representing 
the number of days covered by the assigned signal (e.g., 
X = 61 for a comparison with an assigned JJ signal and 
X = 92 for a JJA signal). These synthetic time-series are 
independent from the real-world data but behave in the 
same way in terms of day-to-day changes in temperature 
and precipitation probability. Correlations were calculated 
with the candidate climate variables ending on the first day 
of the assigned signal (e.g., June 1st / 152nd Julian Date; 
Ax), moving one day at a time and repeated until reaching 
the final day of the assigned window (e.g., August 31st / 
243rd Julian Date) (Fig. 2). For a pseudo tree-ring record 

Fig. 2  Overview of the analysis presented in this paper exemplified by a July–August precipitation signal where the Ax is r = 0.50
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 (PTRn) with an assigned JJA signal, 7,636 correlations 
were produced (83 windows and 92 days). Correlations 
were only calculated for windows that overlapped or were 
fully encompassed by the assigned window. Both Pear-
son’s correlations and Spearman’s ranked correlations 
were calculated to assess the effect each method had on 
the absolute difference in correlation. The analysis was 
performed for 31-, 51-, and 71-year periods.

The Mxn obtained from the analysis was compared 
to the Axn for the same  PTRn (which was always within 
r =  + /– 0.05 of the real-world data). Because the matrix of 
correlations calculated also included the seasonal window 
of ASn, the Mxn value will always be equal to or greater 
than Axn. The differences (Dx) between the Mx of each of 
the 10,000 PTRs and their corresponding AxS were fitted 
with a Kernel density distribution. The 95th percentile of 
the distribution was then calculated for each site/chronol-
ogy to provide an estimate of the magnitude of correlation 
inflation occurring 1 in 20 times, as well as the mean cor-
relation inflation for the 10,000 comparisons. The 95th 
percentile represents an estimate of when the maximum 
correlation (Mx) based on daily-resolved data is stronger 
than the monthly/season correlation (Ax) beyond chance 
(at p = 0.05).

Simulation of synthetic data to test signal strength 
influence

In addition to the above simulations and comparisons, a 
theoretical ensemble of tree-ring chronologies with no 
direct real-world counterpart was also produced. For each 
climate variable, i.e., precipitation and maximum tempera-
ture, reconstructed components of all five locations were 
used and chosen at random and weighted by relative normal-
ized eigenvalue. This set of chronologies was used as a basis 
to produce PTRs with various autocorrelation (at 1-year 
lag; AR1) magnitudes, Ax of different strengths (r = 0.45, 
0.50, 0.55, and 0.60), and for three potential signal window 
lengths (one, two, and three months). An E-OBS grid point 
from central Germany (50.375°W; 9.875°N) was used for 
the climate comparison, for JJA precipitation and maximum 
temperature. The range of Ax is within the observed relation-
ship between tree-ring records and local climate variables 
for the region (St George and Ault 2014), as well as the full 
dataset analyzed here and should be considered realistic. 
This suite of chronologies produced from PTRs with similar 
time series characteristics, allows for the isolation of a sin-
gle parameter to be assessed as an influence on correlation 
inflation. Additionally, the same PTRs were produced for a 
scenario where Ax = 0.00 (+ /– 0.05) to assess how strong 
spurious correlations can become from a large number of 
comparisons of initially unrelated series.

Results

For each of the ten chronologies, 10,000 PTRs mimicking the 
spectral properties of the real-world data were produced. Each 
PTR was correlated similarly (r =  + /– 0.05) with the monthly 
totals/averages of precipitation/maximum temperature gener-
ated from the WeaGETS simulator to that of the real tree-
ring chronology against real observed climate data. The daily 
data making up the totals/averages differed for each PTR but 
were generated based on the instrumental data. As such, these 
results should be interpreted as an estimate of shared vari-
ability stemming purely from a large number of comparisons.

Distribution of correlation inflation 
in precipitation‑sensitive settings

The maximum Pearson’s correlations (Mx) from comparison 
between PTRs and the WeaGETS generated daily precipita-
tion data exceeded their respective assigned (Ax) correla-
tions by up to r = 0.23 (for the site from Sweden, adjusted 
latewood width, July, 31 years; SE-LWa-J-31) when consid-
ering the 95th percentile (Table 2; Fig. 3b). The lowest Dx 
value was recorded for FR-TRW-JJA-71 (r = 0.06). For all 
the precipitation-related tree-ring records, the differences 
between Ax and Mx decreased with length of comparison 
regardless of number of observations, as shown by darker 
lines representing longer record length (Fig. 3). The same 
pattern holds true when considering the mean (i.e., the 50th 
percentile), with average Dx values ranging from 0.02 to 
0.12 (Supplementary Table 1). Dx was larger for sites with 
lower Ax, largely due to greater space to the r = 1.00 upper 
bound. This suggests that sites with lower “true” correla-
tion may be more susceptible to inflated correlations due to 
repeated comparisons.

The differences between Ax and Mx for Spearman’s corre-
lations (Dx) were larger than those obtained using Pearson’s 
correlations (Fig. 3). In some environments, parametric tests 
may not be suitable because the target (precipitation) data 
is not always normally distributed and/or they contain outli-
ers. For example, of the 10,000 generated July precipitation 
time-series produced from WeaGETS for the Eketånga  LWa 
chronology 11%–9%, depending on number of years pro-
duced, fail a Lilliefors test for normality (Conover 1980). 
For the 10-day windows, less than 50% of the 310,000 gen-
erated precipitation sum series passed the same test when 
calculated for the 71-year period. In such cases, Spearman’s 
correlation tests may be more appropriate.

Distributions of correlation inflation 
in temperature‑sensitive settings

The same general patterns recorded for precipitation-
sensitive chronologies are also apparent for the five 
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temperature-related records (Fig. 4), with the largest Dx 
values recorded for the 31-year periods. The overall differ-
ences are slightly smaller, however. The highest 95th per-
centile inflation for the five temperature-sensitive records 
was found for SE-TRW-J-31 (r = 0.18; Table 2). Mean Dx 
ranged from 0.02 to 0.08, with the lowest values recorded 
for CZ-δ18O-J-71 (Supplementary Table 1). Spearman’s cor-
relation differences (Dx) were overall lower for temperature-
sensitive chronologies compared to those of the precipita-
tion-sensitive records, although Ax values were also slightly 
higher. Similar to the precipitation comparison, Spearman’s 
Dx was higher than Pearson’s Dx across all periods and chro-
nologies (Table 2).

Influence of signal strength and autocorrelation

The generic PTRs produced without real-world equivalences 
allowed for the isolation of various parameters such as sig-
nal strength and autocorrelation, and the assessment of their 
relative impact on increased correlations (Tables 3, 4). For 
all windows of comparisons (i.e., 31- to 71-year), there was a 

general decrease in Dx with increasing Ax (Fig. 5). Similarly, 
Dx decreased with shorter windows of Ax (e.g., one month 
compared to three months). These results agree with those 
of the real-world examples (Table 2). The results display 
greater differences between the 31-year and 51-year periods 
versus the 51-year and 71-year periods, suggesting a nega-
tive exponential relationship between spurious correlation 
inflation and comparison sample size. The 95th percentile 
for the highest values (precipitation; Ax = 0.45; three months 
window) of the 31-year period (Pearson’s Dx = 0.24 and 
Spearman’s Dx = 0.26) are nine points higher than the same 
test for the 51-year period (Pearson’s Dx = 0.15 and Spear-
man’s Dx = 0.17) (Table 3). For the 71-year period, the drop 
was four points. Similar differences are also recorded for 
mean Dx (Supplementary Tables 2, 3).

The results for Ax = 0.00 show the highest differences 
with 95th percentile Mx of all calculated comparisons, both 
for Pearson’s and Spearman’s correlation (Tables 3, 4). In 
several cases, the correlations between the PTRs and daily 
data exceeded r = 0.50. As with the real-world examples, the 
magnitude of spurious correlation was the highest for the 

Fig. 3  Kernel density distributions of the difference between 
assigned and maximum Pearson’s correlations (top) and Spear-
man’s correlations (bottom) for five precipitation-sensitive chronolo-
gies analyzed (n = 10,000). Dark blue/green = 71-year period, blue/

green = 51-year period, light blue/green = 31-year period. The dashed 
lines represent the upper 5th percentile of values, of respective color. 
R-values indicate the Pearson’s and Spearman’s correlation between 
the real-world tree-ring and precipitation data



 M. C. A. Torbenson et al.    3  Page 8 of 16

31-year period. For precipitation, the mean Dx values (Sup-
plementary Tables 2, 3) indicate that spurious correlations 
up to 0.39 can be expected for a 31-year period on average. 
Of the 10,000 comparisons for three months windows, over 
60% displayed correlations greater than the threshold for a 
standard p value < 0.05 (r = 0.356; 0.276; and 0.234 for 31-, 
51-, and 71-year comparison, respectively). The data under-
lying the distributions for all results are provided through a 
data repository (see below).

Discussion

Our analyses are an assessment of the influence multiple 
comparisons can have on maximum or “optimum” corre-
lation in common settings of dendroclimatic studies. We 
compared assigned monthly or seasonal signals to the cor-
relations of daily data that can occur through PTRs, with 
the distribution and behavior of daily values at a given loca-
tion being derived from the characteristics of real climate 
data from a respective location. Because the signals studied 

are assigned, and therefore deemed “true”, any difference 
between Mx and Ax must be considered spurious. By exten-
sion, these values represent an estimate of type I error—a 
problem affecting many aspects of dendrochronology (e.g., 
Helama 2023).

It should be noted that it is just as unlikely that arbitrary 
months or seasons are the true signal in real-life data as 
it is for any other temporal window (Jevšenak 2019). Fur-
thermore, correlations calculated for data of monthly and/
or seasonal windows are not immune to the problem of 
multiple comparisons either. Although our study focuses 
on correlation inflation that arises specifically from com-
parisons with hundreds to thousands of non-independent 
time-series, these issues should always be considered. We 
acknowledge that our analysis is not exhaustive, as there are 
a large number of parameters that play a role in the correla-
tions between tree-ring chronologies and climate variables. 
These include the assumption of non-bias as it relates to 
sign (Wise and Dannenberg 2019), and the potential role of 
non-stationary processes and of anthropogenic forcings on 
tree growth (Bogachev et al. 2024). Our results are limited 

Fig. 4  Kernel density-fitted distribution of differences between 
assigned and maximum Pearson’s correlations (top) and Spear-
man’s correlations (bottom) for five temperature-sensitive chronolo-
gies analyzed (n = 10,000). Dark red/orange = 71-year period, red/

orange = 51-year period, light red/yellow = 31-year period. The 
dashed lines represent the upper 5th percentile of values, of respec-
tive color. R-values indicate the Pearson’s and Spearman’s correlation 
between the real-world tree-ring and precipitation data
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to precipitation totals and maximum temperatures for one 
to three months. However, tree growth is likely related to 
longer windows of climate variability in some environ-
ments (Stahle et al. 2020; Pompa-García et al. 2021; Bünt-
gen et al. 2024). In such settings, the number of calculated 
correlations is much greater than what we tested here, even 
if limiting the analysis to longer minimum windows (e.g., 
21 days). Furthermore, we only assessed the inflated cor-
relations within the assigned window of signal when it is 
possible for Mx to fall outside the “true” (assigned) window 
with a large enough number of comparisons.

Differences between assigned and maximum 
correlations

Several different tree-ring proxies were used as real-world 
examples but there was no clear influence on the results. 
Ultimately, the original tree-ring data and resulting PTRs are 
only a manifestation of different time-series characteristics 
including signal, autocorrelation, and series length. Whereas 
the presented analysis could have been performed on strictly 
synthetic data, however, the real-world examples provide 
realistic boundaries in terms of tree-ring variables and cli-
matology. They also provide practical examples of how test-
ing the influence of multiple comparisons on correlation pat-
terns for a single site chronology could be undertaken.

The difference between assigned and maximum correla-
tions varied greatly across the analyzed data and periods. 
As expected, fewer years of comparison produced higher 
differences between Ax and Mx (Figs. 3, 4), with 1-in-20 
comparisons inflating correlation by up to 25 points. Such 
inflation will undoubtedly have an impact on the interpreta-
tion of results. For example, a correlation difference between 
Mx and Ax of 0.18 for a setting with an assigned signal of 
r = 0.5 produced an inflated explained variance of 21% in a 

simple linear regression model, and even a Dx of 0.10 would 
result in 10 + % of additional explained variance. Even for 
the longest period of comparison (n = 71), Dx was above 
0.10 for several of the examples analyzed here. Uncertainty 
ranges for any reconstruction based on such relationships 
would therefore considerably underestimate the true amount 
of unexplained variance.

The Dx values presented here can be further generalized, 
as visualized in Fig. 6. Some of these generalizations may 
be expected, but Fig. 5 and Tables 3, 4 provide quantifi-
cations for these relationships. Inflation is less severe for 
shorter windows of assigned signal for which the number 
of comparisons is considerably lower. An assigned signal 
of a three-month window produces over 7,500 correlations 
in the presented setup, but less than 700 are calculated for a 
single month Ax. Similarly, there is a negative relationship 
between Ax and Dx. When the starting point of correlation 
is high, there is less room for improvement as there is a ceil-
ing in correlation, i.e., r = 1.00. This pattern is highlighted 
for the unrelated PTRs (Ax = 0.00), for which a considerable 
number of the synthetic data shows correlations with daily 
windows that would be considered statistically significant if 
the multiple comparisons are not considered.

Recommendations for interpretation

The analysis presented here is not necessarily easy to repro-
duce, but we provide generalized values from this study in 
Tables 3, 4. We do not suggest that these values are universal 
or absolute but rather that they can provide a guideline for 
assessing the role multiple comparisons play in overestima-
tion of significance as it pertains to dendroclimatological 
studies. These estimates do, however, represent the general 
range of values one might expect in a similar setting and the 
results from “real-world” data (Table 2) align well with the 

Fig. 5  Relationship between 
assigned signal and 95th per-
centile of Dx (maximum minus 
assigned correlation) for (a) 
Pearson’s and (b) Spearman’s 
correlations of precipitation-
sensitive series, and (c) Pear-
son’s and (d) Spearman’s corre-
lations of temperature-sensitive 
series. Up-pointing triangles 
show results for 31-year, circles 
51-year, and down-pointing 
triangles 71-year periods. Four/
three markers are plotted for 
each case, representing different 
AR1 values
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generalized inflations in Tables 3, 4. Care should be taken 
when interpreting the relationship between tree-ring chro-
nologies and daily resolved climate data, especially when 
monthly or seasonal correlations are weak, and themselves 
potentially considered statistically significant due to multiple 
comparisons.

The high Dx values for PTRs with an assigned signal of 
r = 0.00 indicate the magnitude of the multiple compari-
sons problem in dendroclimatology. Inflated correlations of 
r > 0.50 were recorded for the 95th percentiles (Tables 3, 4). 
Such correlations would be highly statistically significant if 
using p values of single-comparison tests. Ultimately, the 
high number of time-series pairs caused inflation of cor-
relation that rivals that which may be expected in European 
dendroclimatic settings. Therefore, the use of daily data 
could, in the worst case scenario, even mask any “true” 
relationship between tree-growth and climate. Conversely, 
the generalized estimates presented can provide statistical 
support in cases for which tree-ring chronologies display 
strong correlations with climate of specific sub-monthly or 
sub-seasonal windows. For example, a record with a cor-
relation of r = 0.68 with precipitation totals for a 13-day 
window but only r = 0.45 with its strongest seasonal (1- or 
2-months) window would occur less than one-in-twenty 
times by chance. We suggest that these estimates may be 
used to assess if a relationship between a tree-ring proxy 
and climate variability for a specific daily-resolved window 
is significantly different from the strongest monthly/seasonal 
correlation. If the difference (Dx) is less than corresponding 
values in Tables 3, 4, it should be treated with caution. Fur-
thermore, adjustments to significance levels (such as FDR, 
Benjamini and Hochberg 1995; Jafari and Ansari-Pour 2019) 
can be performed using the outputs of these tests.

Beyond these values, we strongly urge future studies to 
consider whether or not the tests applied are appropriate for 
the data. We show that Pearson’s correlation produces lower 
differences (Dx) between Ax and Mx compared to Spearman’s 
correlation. Although Pearson’s correlation does not neces-
sarily assume normality, it can be sensitive to outliers (e.g., 
Zuur et al. 2010)—issues that are sometimes overlooked 
in the field of dendroclimatology. The issue of outliers and 
non-normality is greater for averages of shorter windows, 
and thus likely to affect daily data more than longer seasonal 
windows. Regardless, the larger differences for Spearman’s 
correlation for PTRs across assigned precipitation signals 
indicate that the true problem is perhaps greater than what 
is suggested by the Pearson’s values.

Lastly, we also want to highlight alternative approaches 
to utilizing information from daily resolved data without 
greatly increasing the number of correlations, with nota-
ble early examples, including Woodhouse and Meko (1997) 
and Yuan et al. (2003). More recently, similar studies that 
compare the frequency of specific events within a season 
have been published (Howard and Stahle 2020; Howard et al. 
2023; Lee and Dannenberg 2023). We speculate that such 
methods are more robust than moving windows of correla-
tions, as they limit the number of comparisons performed. 
Other approaches that explicitly consider the timing of 
physiological activity (e.g., Unterholzner et al. 2024) may 
also decrease the risk of overinterpretation. By confining 
the analysis to windows within or near the growing sea-
son or testing monthly-to-seasonal windows prior to the use 
of higher resolution data, the number comparisons can be 
lowered and the risk of spurious relationships subsequently 
limited.

Future directions for study

Our results do not show any significant differences for 
varying autocorrelation (or serial correlation; AR1) in the 
tree-ring record (Tables 3, 4). However, autocorrelation 
does have an effect on the distribution and regression of 
any time-series (Dawdy and Matalas 1964), and it is pos-
sible that autocorrelation in the “target”, i.e., the assigned 
climate signal, could play a role in the relationship stud-
ied. The small differences between precipitation and tem-
perature Dx displayed may hint at this, as autocorrelation 
differs between the two climate variables. Therefore, local 
climatology may play a role in the inflation of correlation 
with daily data. Outside of Europe, daily resolved climate 
data, or monthly for that matter, may be much more limited 
in its temporal extent. Our results suggest that the issue of 
multiple comparisons may be even greater in such places, as 
the exaggeration of correlations are of greater magnitude for 
shorter windows (e.g., 31 compared to 71 year-long correla-
tions; Fig. 3). Ultimately, these comparisons do not require 

Fig. 6  Diagram of the general patterns of correlation inflation drivers 
suggested by the results
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real-world data beyond the characteristics of the tree-ring 
series and the local climatology. However, in places like the 
United States, which is home to a wealth of tree-ring data 
(St George and Ault 2014; Stahle et al. 2020) as well as long 
records of daily weather observations (Menne et al. 2015), 
work similar to ours could provide complimentary results, 
as it would incorporate environments that either dendrochro-
nologically or climatologically fall beyond the conditions of 
sites tested here.

The problem of multiple comparisons is also affecting 
ecological interpretations of tree productivity through tree 
rings, including phenological changes (Yang et al. 2017). 
A tree-ring chronology that displays its highest correlation 
with June 12th to June 29th precipitation totals for period 
1 and with, e.g., June 25th to July 8th for period 2, is not 
necessarily showing evidence of a robust shift in signal. 
Approaches to test such differences, e.g., based on Fisher 
(1921), as implemented by Meko et al. (2011) or bootstrap-
ping, as presented by Jevšenak (2019) would need to con-
sider the large number of comparisons produced. Although 
we do not explicitly address such questions, our results hint 
at how this issue could influence interpretations of tempo-
rally changing correlations based on daily-resolved climate 
data. Future studies should attempt to confine this error and 
provide estimates for associated uncertainties.

Our results represent the first thorough analysis of how 
multiple correlations can affect statistical significance as it 
pertains to daily-resolved climate data in the field of dendro-
climatology. However, they are only a small contribution to 
a larger scientific discussion on the adjustment of p values 
(Jafari and Ansari-Pour 2019). That discussion, in itself, is 
part of ongoing conversations that concern how research-
ers perceive and use statistical significance (Lin et al. 2013; 
Wasserstein and Lazar 2016). Beyond the statistical con-
siderations presented here, any robust interpretation will 
undoubtedly benefit from expert knowledge and inferences 
of growing season length, biophysical factors, and local 
climatology.

Conclusion

We present an analysis of the multiple comparisons prob-
lem as it pertains to dendroclimatology and the use of sub-
seasonal climate data. The differences between the assigned 
signal of the PTR and the maximum recorded correlation 
are considerable. As expected, the difference increases as 
the number of observations decreases. The issue appears 
greater for precipitation-sensitive records compared to 
those with a temperature signal, although only marginally. 
Our results indicate that the magnitude of difference stem-
ming from inflated correlations decreases as the assigned 
signal strength increases. Most of these limitations can be 

overcome by testing the potential of inflated correlation on 
a site-by-site basis.

Ultimately, the responsibility of interpreting statistical 
and practical significances of correlations between tree-
ring chronologies and climate data lay firmly in the hands of 
the user. The development of increasingly computationally 
demanding methods for comparing proxy data with high-
resolution climate observations is embraced by the wider 
tree-ring community. However, if basic statistical considera-
tions are not made, there is an inherent risk for overinterpre-
tation. It is clear that a high number of correlations between 
initially unrelated time-series of similar characteristics to 
those of real-world tree-ring and climate data can lead to 
perceived statistical significance. We hope that the results 
presented here may help limit such issues.
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