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ABSTRACT
Subject to a long research tradition, the tree line is considered an important biogeographic 
indicator of climate changes and associated range shifts. Realized tree line positions and the 
potential tree line isotherm are, however, rarely in equilibrium because trees are unable to track 
rapid temperature variations. Often ignored in tree line research, this dilemma constrains the 
suitability of tree line trees for understanding alpine vegetation responses to anthropogenic 
warming. Here, we present combined dendrochronological and wood anatomical assessments of 
1,351 seedlings and saplings from three subalpine forest species—larch (Larix decidua Mill.), pine 
(Pinus cembra L.), and spruce (Picea abies)—collected between ~2,200 and 2,600 m.a.s.l. in the Swiss 
Alps. We found evidence for temperature-induced, pulse-like seedling germination, rather than 
a continuous, long-term upward movement. Though the species spread across overlapping eleva-
tional ranges, larch was found at the highest elevations, followed by spruce and pine. Surprisingly, 
we found a varying age structure, with no sign of decreasing age toward higher elevations. Spring 
and summer temperatures promoted germination pulses, but postgermination survival was likely 
facilitated by species-specific plant traits. Our study demonstrates the importance of seedling and 
sapling data from above the tree line to understand prevailing vegetation dynamics at cold 
temperature extremes and also suggests future tree line advancement in the Swiss Alps.
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Introduction

Tree line ecotones are distinct biogeographic phenom-
ena at high elevations and latitudes around the world 
(Troll et al. 1973; Zhao et al. 2015; Körner 2021). Global 
tree line positions follow a common isotherm (von 
Humboldt and Bonpland 1807; Körner 1998, 2021), 
which approximates the temperature threshold for 
upright tree growth (Körner 1998, 2007, 2021). One 
theory to explain this cold range limit is the carbon 
sink limitation hypothesis (McNown and Sullivan  
2013), which states that reduced cambial cell division 
caused by low temperatures prevents the investment of 
carbon in growth (Hoch and Körner 2011; Lenz et al.  
2013; Cabon et al. 2020). Conversely, the source limita-
tion hypothesis implies that tree growth above the tree 
line is restricted by limited carbon fixation 
(Sveinbjörnsson 2000; Sullivan and Sveinbjörnsson  

2011), which may result from reduced stomatal gas 
exchange (Goldstein, Brubaker, and Hinckley 1985) 
due to low soil temperatures and constrained nutrient 
availability (Li et al. 2008; Richardson and Friedland  
2009; McNown and Sullivan 2013). The loss or partial 
damage of cell tissue due to freezing stress may also play 
a role at the tree line (Hadley and Smith 1986), and 
recent studies further suggested that the lignification of 
secondary cell walls in woody plants can be limited by 
cold temperatures (Crivellaro and Büntgen 2020; 
Crivellaro et al. 2022).

As global temperatures have increased by ~1°C 
during the twentieth century (Intergovernmental 
Panel on Climate Change 2021), the tree line iso-
therm—that is, the thermal limit for upright tree 
growth—is shifting upward and poleward (Büntgen 
et al. 2022). The position of the isotherm under rapid 
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warming represents the “potential” tree line, which 
trees may eventually reach after adjustment of the 
realized tree line to warmer conditions (Körner  
2021). However, trees are sessile and thus unable to 
track changes in the elevational and latitudinal posi-
tion of the tree line isotherm. The realized and poten-
tial tree lines are therefore rarely, if ever, in 
equilibrium (Büntgen et al. 2022), and a difference of 
around 300 m between the lower realized and higher 
potential tree line positions has been reported under 
anthropogenic global warming (Büntgen et al. 2022). 
Yet, many studies overlook this apparent lag and con-
sider climatic response of the realized tree line to 
predict future movements (Holtmeier and Broll 2005; 
Kullman and Kjällgren 2008; Harsch and Bader 2011; 
Schickhoff et al. 2015; Vitali et al. 2018; Chhetri and 
Thai 2019; Mienna et al. 2020; Hansson, Dargusch, 
and Shulmeister 2021; Chen et al. 2022; Dandan, 
Deshuai, and Jianqin 2022).

To overcome this, it could be argued that research 
efforts should focus on monitoring vegetation above the 
tree line, where the impacts of warming on young trees, 
which ultimately will constitute the future tree line, may 
be better understood. For instance, the distribution of 
seedlings and saplings of alpine and boreal forest trees at 
their elevational and latitudinal margins has been inves-
tigated (Germino, Smith, and Resor 2002; Mamet and 
Kershaw 2013; Piermattei, Garbarino, and Urbinati  
2014; Bognounou et al. 2018; Frei et al. 2018). 
Additionally, recruitment patterns of arctic and alpine 
tree line species have been linked to increasing tempera-
tures (Esper and Schweingruber 2004; Hofgaard, Dalen, 
and Hytteborn 2009; Piermattei, Renzaglia, and Urbinati  
2012; Büntgen et al. 2015, 2018; Lu et al. 2016; Vitali 
et al. 2019; Malfasi and Cannone 2020; Dolezal et al.  
2021). However, many of these studies are limited by 
their small sample size and a lack of wood anatomical 
and dendrochronological measurements. The latter 
caveat prevents the accurate assessment of variables 
such as root length, bark thickness, xylem diameter, 
and even plant age. Such data, however, are likely to 
hold valuable information for untangling the impact of 
climate on alpine vegetation.

Here, we combine dendrochronological and wood 
anatomical techniques and present a unique data set of 
1,341 excavated seedlings and saplings above the realized 
upper tree line in the Swiss Alps. We aim to utilize 
dendrochronological and wood anatomical measure-
ments to assess the recruitment patterns and growth of 
three species and discuss our findings with respect to 
species-specific germination strategies, potential survival 
strategies, and future tree line dynamics.

Materials and methods

Sampling took place in the Lötschental Valley in the 
Swiss canton Valais (Büntgen 2006; Moser et al. 2010). 
This inner-alpine valley is surrounded by several sum-
mits exceeding 3,500 m.a.s.l., and the upper tree line is 
located at approximately 2,100 to 2,300 m.a.s.l. Mean 
annual temperature is 2.5°C at the tree line and 5°C at 
the valley bottom, and mean annual precipitation 
exceeds 800 mm (Cabon et al. 2020). Our study sites 
were located above the villages of Kippel and Wiler on 
a north-facing slope between 2,200 and 2,600 m.a.s.l. 
(46.371–46.386° E and 7.772–7.795° N). This slope 
aspect was chosen as south-facing slopes in the region 
are extensively used for alpine pasturing and we aimed 
to avoid disturbance caused by grazing. We sampled 
in late September toward the end of the growing 
seasons of 2017 and 2018. The lower elevation limit 
of our sampling gradient was constrained by the local 
timberline (i.e., the upper limit of continuous, closed 
forests), whereas the upper limit was defined by the 
highest seedling. All larch, pine, and spruce seedlings 
(<10 cm aboveground height) and saplings (10–40 cm 
aboveground height) along the transect were exca-
vated, Global Positioning System coordinates 
recorded, and the complete above- and belowground 
plant fractions labeled and archived in plastic bags. 
A total of 1,351 samples were collected during all field 
campaigns.

The total above- and belowground stem and root 
lengths were recorded using a measuring tape, and 
root collar diameters were measured with digital 
calipers at 0.1-mm precision. Samples were split at 
the root collar using a benchtop bandsaw and stem 
sections were soaked in warm water for softening. 
A WSL-lab microtome was used to slice thin sections 
of 20 to 40 μm (three to four for each sample), which 
were placed on microscope slides with a drop of 
glycerin and a glass cover (Gärtner et al. 2015). 
Bark thickness and xylem diameter of each cross 
section were measured at 0.1-mm precision under 
a light microscope with 10× magnification. Annual 
growth rings were microscopically counted to deter-
mine the cambial age and germination year of each 
sample. Species-specific variations in morphological 
and anatomical plant traits (i.e., stem and root 
length, root collar diameter, bark thickness, and 
xylem diameter), as well as age/germination patterns, 
were evaluated using descriptive statistics. Simple 
linear regression models were fitted in RStudio 
v1.2.5033 (2019) to investigate relationships between 
each measured plant trait and elevation for 
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individual and combined species. Assumptions of 
each model were checked using scatterplots (linear-
ity), residuals versus fit plots (independence of errors 
and equal variances), and histograms of both stan-
dardized and regular residuals (normality of errors).

Homogenized, high-resolution, 0.25° × 0.25°, 
monthly minimum, mean, and maximum temperatures 
from 1971 to 2017 were extracted from the E-OBS 
v23.1e data set (Cornes et al. 2018). Spring (March– 
May; MAM), summer (June–August; JJA), growing sea-
son (AMJJAS), autumn (September–November; SON), 
and winter (December–February; DJF) averages were 
calculated from the monthly data to account for inter-
seasonal temperature effects on plant germination 
(Renard, McIntire, and Fajardo 2015; Bader et al.  
2017). April to September (AMJJAS) temperature 
averages were considered to explore the impacts of 
warming over the tentative growing season.

Germination frequency and seasonal temperature data 
were tested for normality using Shapiro-Wilk tests. If both 
of the variables to be correlated with each other were 
normally distributed (p < .05), a Pearson’s correlation 
test was used. If one or both variables were not normally 
distributed, a Spearman’s correlation test was used 
instead. Correlations between germination frequency 
and temperature were calculated over the entire temporal 
extent of the combined data set (1971–2017), as well as 
over shorter species-specific windows. Years where no 
germination occurred were excluded automatically. The 
same climate response analysis was repeated for precipi-
tation totals (E-OBS v23.1e; Cornes et al. 2018).

Results

Species Composition and Age Distribution

The dominant species in our study was pine (649 sam-
ples), followed by larch (500 samples) and spruce (202 
samples). The three species spread across overlapping 
elevational ranges but were concentrated at different 
elevations (Figure 1, Figure 2). Larch showed the largest 
elevational distribution from 2,263 to 2,599 m.a.s.l., fol-
lowed by spruce from 2,356 to 2,560 m.a.s.l. and pine 
from 2,216 to 2,520 m.a.s.l. Plant ages differed system-
atically among species and with elevation (Figure 2). 
Most samples were between three and eighteen years 
(i.e., germination years from 2000 to 2015), with the 
oldest sample being a forty-eight-year-old larch sapling. 
Spruce samples were on average older (fourteen years) 
than larch (eleven years) and pine (eight years). We 
found a positive relationship between age and elevation 
(Figure 2). Though this relationship did not explain 
much variance (R2 = 0.0–0.15), it was significant for 
larch, pine, and the combined samples (p< .05).

Germination Frequency and Climate Variability

Germination frequency followed a bell shape, reaching 
its highest point in 2011 when a total of 240 samples 
germinated in one summer (Figure 3A). In this year, the 
largest number of pine samples germinated (n = 174). 
The germination peaks of larch and spruce were found 
in 2010 (n = 59) and 2008 (n = 21), respectively. 
Germination–climate correlations were significant for 

Figure 1. Distribution curves displaying species-specific elevational ranges, with colors representing the different species: pine (blue), 
larch (gray), and spruce (red).
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all species with spring, summer, and growing season 
minimum, mean, and maximum temperatures (p< .05; 
Figure 3B). Strongest correlations were recorded for 
larch (r= 0.55–0.75), followed by spruce (r= 0.43–0.70) 
and pine (r = 0.40–0.56). Pine correlated strongest with 
growing season minimum temperatures, though 
(r= 0.75). Correlations with autumn temperatures were 
weaker overall (r= 0.25–0.45) and significant across all 
species only for minimum temperatures (p< .05).

Plant Trait Characteristics

The longest sample was an 88-cm larch sapling (total 
plant length). Larch represented the longest samples on 
average (X = 25.4 cm), followed by pine (23.1 cm) and 
spruce (22.1 cm). Interestingly, the belowground 
lengths, ranging from 11.3 to 13.3 cm among species, 

exceeded the aboveground values, which range from 9.9 
to 12.3 cm (Figure 4A). Overall, larch samples were 
wider (Figure 4B), with root collar diameter values aver-
aging 7.0 mm (5.2 mm for spruce and 4.0 mm for pine). 
Moreover, larch samples had thicker bark (X = 1.5 mm, 
compared to 0.95 mm for spruce and 0.92 mm for pine) 
and wider xylems (X = 5.7 mm) than spruce 
(X = 4.31 mm) and pine (X = 3.39 mm). We found 
a negative relationship between aboveground length 
and elevation (Figure 5A), significant for spruce 
(p< .001), pine (p< .001), and all species combined 
(p< .05). An inverse relationship was observed between 
elevation and belowground length (Figure 5B), strongest 
for all species, followed by larch, pine, and spruce (all 
ps< .001). In addition, xylem diameter increased with 
elevation (Figure 5C), with the same pattern of decreas-
ing strength according to species as for belowground 

Figure 2. Regression analyses between elevation and germination/age. Color coding is representative of the three different species, 
and black displays the trend for all species combined. (a) Species-specific and overall sample linear relationships between elevation 
and sample germination. (b) Species-specific and overall sample linear relationships between elevation and sample age.

Figure 3. Species-specific differences in germination timings and the relationship between germination and average seasonal land 
surface temperature, with colors representing the different species and black representing germination frequency for the three species 
combined. (a) Graph depicting germination timings between 1970 and 2017 and peaks for the three studied species as well as general 
germination trends for all species combined. (b) Plot displaying correlation results for germination–temperature correlations. The 
x-axis displays seasonal averages from winter (SON), spring (MAM), summer (JJA), growing season (AMJJAS), and autumn (SON) for 
the year of germination. Points are displayed for each seasonal average from left to right for maximum, mean, and minimum seasonal 
temperature in this respective order.
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length. The relationship between bark thickness and 
elevation was positive (Figure 5D) but only significant 
for larch and all species combined (p < .001). Positive 
relationships were also observed between elevation and 
root collar diameter, as well as total stem length (not 
shown).

Discussion and conclusions

Our results indicated that there is a varying species 
composition along the elevational transect (Figure 1). 
Though regression analyses showed that age increases 
with elevation (Figure 2), except for spruce, where the 
relationship is nonsignificant (p= .190), the low R2 

values observed are also a testament to the variability 

present in the age data. The latter contradicts the 
expected gradual decrease in tree age above the tree 
line associated with seedling recruitment reported in 
previous research (Leonelli et al. 2010; Shrestha, 
Hofgaard, and Vandvik 2014; Gatti et al. 2019) and 
implies that recruitment is active across the entire eco-
tone above the tree line (Piermattei, Renzaglia, and 
Urbinati 2012). In the following we propose potential 
explanations for the observed age distribution and its 
link to species composition by outlining factors influen-
cing different stages of seedling recruitment including 
dispersal, germination, survival, and growth.

Firstly, spruce and larch seed dispersal is exclusively 
carried out by wind (Mosca et al. 2018), whereas dis-
persal of pine seeds is connected to Nucifraga 

Figure 4. Box plots displaying species-specific measurements of anatomical and morphological traits, with colors representing the 
different species. (a) Variations in measurements for total, aboveground, and belowground plant length. (b) Variations measurements 
for root collar diameter, xylem diameter, and bark thickness width. See Figure 5 for linear trends and relationships between plant traits 
and elevation.

Figure 5. Regression analyses between elevations and various of the measured anatomical and morphological traits. Color coding is 
representative of the three different species, and black displays the trend for all species combined. (a) Species-specific and overall 
sample linear relationships between elevation and sample total plant length. (b) Species-specific and overall sample linear relation-
ships between elevation and aboveground length. (c) Species-specific and overall sample linear relationships between elevation and 
xylem diameter. (d) Species-specific and overall sample linear relationships between elevation and bark thickness.
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caryocatactes, commonly known as the European nut-
cracker bird (Neuschulz et al. 2017). At high elevations, 
low vegetation and protection from tall trees reduce 
habitat viability, so pine seeds may be consumed and 
dispersed within the bird’s habitat range near the tree 
line edge. In comparison, wind dispersal may reach 
higher elevations given the high wind velocities asso-
ciated with lack of forest cover above the tree line 
(Kašpar, Hošek, and Treml 2017; André, Lavergne, and 
Carcaillet 2023). This could explain the concentration of 
pine seedlings, both old and young, on the lower band of 
the ecotone and the wider and overlapping elevational 
ranges of spruce and larch samples higher on the 
transect.

Our results on germination–climate correlations 
indicate that warm temperatures support germination 
“pulses” of seeds that successfully disperse and survive 
pregermination (e.g., predation and freeze damage). We 
found a germination peak in 2011, which was 
a particularly warm year and observe positive correla-
tions between germination frequency and temperature 
during spring, summer, and growing seasons (Figure 3). 
This interpretation is further supported by a lack of 
significant correlations between germination frequency 
and winter temperatures and in line with previous work 
(Körner and Paulsen 2004; Mamet and Kershaw 2013; 
Lett and Dorrepaal 2018), which suggests that warm soil 
temperatures catalyze the enzymatic reactions necessary 
for embryo growth, thereby enabling germination to 
occur (Ali and Elozeiri 2017).

The positive relationship between temperature and 
germination frequency could also be due to microsite 
interactions between warmth and water availability. 
Water is necessary for germination, because it 
nourishes the seed embryo by carrying soil nutrients 
and softens the seed shell to allow this embryo to burst 
(Han and Yang 2015). Increasing temperatures trigger 
snowmelt, providing higher levels of soil moisture 
through infiltration (Germino, Smith, and Resor  
2002), and prevent ground frost from accumulating 
and preventing water movement through frozen soil 
(Luo et al. 2019). Though snow data were not included 
in our analysis, Buchmann et al. (2023) discussed the 
possibility of homogenizing existing Swiss snow depth 
data, which could possibly be incorporated in future 
research aiming to understand the interactions 
between snow cover and germination.

In cases where temperature negatively impacts soil 
moisture—for instance, through increased evaporation 
—excessively high temperatures can be detrimental to 
germination (Guo, Shen, and Shi 2020; Ramírez et al.  
2022). This is because once optimum soil temperature is 
reached, enzymatic activity will decrease, and seeds may 

die under excessive thermal stress (Wieser, Oberhuber, 
and Gruber 2019; Bailey, Elliott, and Schliep 2021). This 
could explain why spring, rather than summer, corre-
lated strongest with germination.

There is some indication of species-specific germina-
tion responses to climate. For instance, pine samples 
were found at lower elevations and thus may be less 
impacted by temperature, because the effects of climate 
on vegetation species are most pronounced near climatic 
thresholds, at higher elevations (Yu et al. 2011). This 
theory may clarify why pine climate–germination corre-
lations are weaker than those for larch and spruce. We 
also see that germination of all species, individual and 
combined, is correlated to autumn minimum tempera-
tures, but only spruce is impacted by mean and max-
imum temperatures (Figure 3). This could indicate 
a lower temperature threshold for germination onset in 
this species, but no evidence exists to support this the-
ory, and our results may rather reflect data set limita-
tions. To confirm species-specific germination 
responses, finer scale local climate data should be used 
in the future. Nevertheless, our findings imply that 
increasing global temperatures leading these germina-
tion pulses above the tree line will promote tree line 
advancement, given that specimens survive postgermi-
nation, as described in the following.

The survival of specimens in extremely cold climates, 
as prevalent above the Lötschental tree line, depends on 
species-specific morphological and anatomical traits 
allowing samples to thrive at different elevations. Larch 
reached the highest elevations and was the only species 
present above 2,560 m.a.s.l. (Figure 1). A potential expla-
nation could be the thicker bark of larch (X = 1.5 mm) 
compared to spruce and pine (Figure 4), providing 
increased thermal protection of the cambium cell layer 
to prevent frost damage and disruption of cellulose and 
lignin (Pausas 2014). This theory is supported by the fact 
that larch is the only species in which bark thickness 
significantly increased with elevation (p < .001). Another 
hypothesis is that the longer roots of larch samples could 
facilitate root water uptake at higher elevations. Gharun 
et al. (2020) demonstrated that soil water content 
decreases with elevation in the Swiss Alps, because the 
ground is frozen for long periods due to the cold climate. 
Soil ice formation prevents root water uptake, combined 
with strong winds, which contribute to evaporation, 
resulting in “frost drought” (Pellet and Hauck 2017). 
Thus, facilitating moisture access through long root 
systems would increase this species’ chance of survival 
(Badalotti, Anfodillo, and Grace 2000). Enhanced root 
water uptake in larch compared to other species may 
also result from its wider xylem as well because the 
strongest relationship between xylem diameter and 
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elevation (Figure 5). Larger xylem cells (which are asso-
ciated with larger xylem size) allow for more hydropho-
bic surface area and more structural strength to facilitate 
water transport enhancing water uptake from low- 
moisture soils (Pereyra et al. 2012). Moreover, during 
frost drought, the risk of xylem embolism is high and 
thus having a larger xylem reduces the risk of all xylem 
cells losing their conductivity (Hacke et al. 2006).

Interestingly, aboveground length was the only vari-
able which decreased with elevation (Figure 5). The 
observed increase in root collar diameter and length 
with elevation, among other variables, demonstrates 
that cold temperatures are not limiting growth at higher 
elevations but that instead the plant is not investing in 
growing upright. The survival of shorter plants at high 
elevations may be facilitated by their proximity to the 
ground, protecting them from aerodynamics which 
impose extremely cold air temperatures on tall trees 
(Scherrer and Kãrner 2010; Körner 2021). This phenom-
enon would indicate no carbon limitation at high eleva-
tions but support the carbon sink hypothesis and in fact 
suggests that by engineering a warmer microclimate, 
seedlings and saplings will continue to grow at such 
elevations. Because plant height is commonly associated 
with age, it would be trivial to assume that short saplings 
at high elevations are younger, supporting the common 
theory that age progressively decreases with elevation. 
Our findings therefore highlight the importance of col-
lecting comprehensive data sets encompassing a wide 
array of variables. We encourage similar research 
including as many anatomical and morphological plant 
traits as possible.

We conclude that recruitment patterns above the 
Lötschental tree line are driven by (1) warm spring and 
summer temperatures driving germination pulses and 
(2) plant-specific anatomical and morphological adapta-
tions supporting survival and growth postgermination. 
Warming temperatures will facilitate seedling recruit-
ment and lead to an upward tree line shift in the Alps. 
However, this conclusion is limited by the many inter-
acting factors that influence recruitment above the tree 
line. An example was previously given regarding the 
interplay between reduced soil water and nutrients at 
high elevations, which may be either positively or nega-
tively impacted by temperature. Should the latter be 
true, the reduction in available resources may enhance 
interspecies competition, highlighting the importance 
for adaptive morphological traits such as long roots 
and wider xylems to increase survival chances 
(Badalotti, Anfodillo, and Grace 2000; Pereyra et al.  
2012). The impact of climate variables, such as tempera-
ture and precipitation, with the moisture and nutrient 
availability in the seedbed may also differ based on 

substrata and soil type and thus impact germination 
timings of various species and at different locations 
(Johnson and Yeakley 2016). Another example is the 
impact of topography, which may mask the effects of 
warming by enhancing wind velocity, promoting cold 
air, and restricting the amount of solar radiation 
(Corripio 2003; Holtmeier and Broll 2010). Solar radia-
tion is also determined by slope aspect, with south- 
facing slopes receiving less incoming radiation, poten-
tially increasing the effects of warming (Zheng et al.  
2021). The impact of natural disturbances, such as ava-
lanches, landslides, and fires, may restrict advancement 
(Holtmeier and Broll 2019; Wang et al. 2019). Moreover, 
animals may interfere with survival both post- and 
pregermination by grazing, trampling, or moving speci-
mens (Wielgolaski, Hofgaard, and Holtmeier 2017). 
Lastly, the influence of human impact on tree line posi-
tion is nonnegligible. Although we avoided human dis-
turbance as much as possible with our slope selection, if 
historic tree lines were lowered due to human activity, 
a lag effect would be expected, making advancement 
currently invisible. These complex interactions between 
abiotic and biotic drivers of tree line dynamics come 
together to create microsite conditions and species- 
specific climate–growth/germination responses and ren-
der the isolation and analysis of a single factor difficult. 
We suggest future research to continue sample small 
specimens above the tree line while obtaining as many 
environmental measurements as possible (e.g., soil 
nutrients, moisture, solar radiation) to ameliorate our 
understanding of microsite and microclimate impacts 
on alpine vegetation.

Although our study used over 1,000 samples, there 
remain data related and methodological limitations that 
may have impacted our findings and conclusions. For 
one, samples were not cross-dated; thus, sample ages 
and resulting germination dates are minimum estimates. 
In addition, the temporal scale for germination–climate 
correlations is quite short, constraining the significance 
of correlations and perhaps contributing to inconsisten-
cies in autumn temperature correlations. The climate 
data used for correlations also have their own limita-
tions. Monthly climate values extracted from the E-OBS 
data set consist of interpolated data from various land 
stations, and these approximate values cannot represent 
the climate conditions at small spatial scales. This is 
especially relevant because the study sites are smaller 
than a gridded cell (Frei et al. 2018). Moreover, our 
hypotheses regarding species-specific anatomical and 
morphological traits are based on species-specific eleva-
tional ranges being dictated by climate, but no analysis 
of the impact of climate on growth was conducted. 
Performing additional regression tests to explore the 
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association between plant traits and accurate tempera-
ture measurements across our elevational transect could 
support the hypotheses.

Despite its limitations, this study has demonstrated 
that seedling and sapling data can successfully be used to 
study vegetation dynamics above the tree line. The 
development of this data set, and its utilization, should 
set the groundwork for wood anatomical and dendroe-
cological research to rethink tree line dynamics and look 
beyond trees. We propose three research avenues to 
motivate future projects: (1) investigations of age dis-
tribution and species composition in various sites above 
the tree line, (2) measurements of site- and species- 
specific factors influencing plant survival and growth 
in alpine vegetation, and (3) applications of dendrochro-
nogical and wood anatomical techniques away from tree 
species and to herbs and shrubs with annual growth 
increments.
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