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A B S T R A C T

Tree-ring stable isotope (TRSI) chronologies that combine information from living and relict wood have the
potential to capture long-term trends that might be missing in traditional tree-ring width and maximum latewood
density measurements. Our understanding of the possible effects of different methods to develop TRSI chro-
nologies is, however, still incomplete. Here, we compare and evaluate five such methods applied to three multi-
millennial-long oxygen isotope (δ18O) TRSI datasets from central Europe, the European Alps and Japan: (a) raw
data, (b) cohort correction, (c) interactive mean correction, (d) outlier correction, and (e) series normalization.
We show that the spectral properties preserved in the final TRSI chronologies not only depend on the data used,
but also on the techniques applied. Method (a) is particularly prone to outliers if the sample size is low. Method
(b) may create artificial steps and trends when single measurement series share similar start dates and/or when
end and start dates are systematically skewed. Methods (c) and (d) yield similar results for annually resolved
data, yet (d) is more suitable for temporally pooled datasets and less sensitive to potential biological age effects.
Method (e) removes any low-frequency signal. Our findings demonstrate the risks and rewards of different TRSI
chronology development techniques that must be carefully adapted to both, the data used and the question
posed.

1. Introduction

Tree rings are valuable proxies of environmental conditions (Fritts,
1976). The limiting climatic factor of a tree’s growth is recorded in the
amount of wood produced in a given year, measured as tree-ring width
(TRW). However, this proxy has limitations in capturing long-term cli-
matic variations that extend beyond the lifespan of individual trees
(Briffa et al., 1996; Cook et al., 1995; Esper et al., 2002, 2012, 2015).
This limitation can possibly be overcome by analyzing tree-ring stable
isotopes (TRSI) (Büntgen, 2022). During photosynthesis, trees incorpo-
rate into their wood the isotopic elements of carbon, oxygen and

hydrogen from water and CO2, the relative abundances of which are
influenced by environmental and climate factors (McCarroll and Loader,
2004). In particular, the abundance of oxygen isotope in tree rings
(δ18O) is mainly dependent on the water source and on the evapo-
transpiration in the soil and in the leaves (Treydte et al., 2014). Thus,
oxygen TRSI reflects the environmental condition rather than the plant
metabolic processes, and from its analysis, it is possible to obtain in-
sights into the climatic conditions that prevailed over long timescales,
potentially spanning several centuries or even millennia (Büntgen,
2022). In fact, TRSI has been used to reconstruct hydroclimate condi-
tions in Asia and Europe over several millennia (Büntgen et al., 2021;
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Helama et al., 2018; Nakatsuka et al., 2020; Treydte et al., 2006; Yang
et al., 2021).

TRSI chronologies do not require complete detrending since TRSI
age-related trends do not span the entire cambial lifespan and are pre-
sent only in the juvenile phase (Arosio et al., 2020; Büntgen et al., 2020;
Duffy et al., 2019; Esper et al., 2010; Torbenson et al., 2022; Wieland
et al., 2024). Moreover, they do not require procedures to stabilize
variance with cambial age, as they are homoscedastic (McCarroll and
Loader, 2004; Warren et al., 2001). This is an important advantage over
TRW chronologies that must undergo detrending procedures to remove
age-related trends and stabilize variance over time (Esper et al., 2003).
However, trees may exhibit varying TRSI mean values due to microcli-
matic conditions or physiological factors (Leavitt, 2010), and different
methods have been used to join individual tree TRSI measurements. The
TRSI averaging method and the tree variability should be taken into
account since potential noise can be introduced into the final chronol-
ogy, considering that TRSI datasets often have a sample replication of
4–6 trees only (McCarroll and Loader, 2004). The effects of these
methods on the final chronologies have not yet been systematically
investigated, while much comparative work has been done on the TRW
chronologies (Cook and Kairiukstis, 1990; Fritts, 1976).

The standard statistical metrics used in tree-ring research, such as
inter-series correlation (R-bar) and Expressed Population Signal (EPS),
focus on the relative coherence in the year-to-year signal across the tree-
ring samples. These measures do not indicate the confidence intervals
around the absolute mean value of the tree-ring measurements
(McCarroll and Loader, 2004). Five different methods have been re-
ported in the literature for building TRSI chronologies, and four of them
include the correction of offsets between trees (Hangartner et al., 2012;
Labuhn et al., 2016). Briefly, they are: (a) the use of the raw data
(RAW-D); (b) the adjustment of the older cohort’s mean to match the
overlap mean (CO–CO); (c) the correction of offset of the individual time
series compared to the mean chronology (IN–CO); (d) the correction of
outlier series (OU–CO); and (e) the normalization of all trees to have the

same mean of 0 (NORM). All these methods have been utilized for
developing long-term paleoclimate reconstructions from TRSI. Howev-
er, it remains unclear which of them produces the most robust records.

Here, we aim to better understand the process of the development of
TRSI chronologies, and therefore apply the five above mentioned
methods to three multi-millennial δ18O TRSI datasets. Comparison of the
resulting chronologies provides insights into the relationships between
the features of the original datasets and the methods applied toward
them.

2. Data and methods

2.1. Data and isotope measurement description

The TRSI dataset from Central Europe contains 147 oak (Quercus
spp.) samples spanning the past 2110 years from modern-day Czech
Republic and southeastern Germany (Büntgen et al., 2021). Latewood
alpha-cellulose from each tree ring underwent modified Jayme-Wise
isolation (Urban et al., 2021), and δ18O measurements were per-
formed at the Global Change Research Institute in Brno using an Iso-
prime 100 isotope ratio mass spectrometer operating in continuous flow
mode with 0.1‰ analytical precision. The TRSI dataset from the Euro-
pean Alps contains 199 trees located at the treeline in the Swiss, Aus-
trian, and Italian Alps between 46.03 and 47.03◦ N and 7.55–15.25◦ W
(Arosio et al., 2020). The dataset contains a mix of Pinus cembra and
Larix decidua samples. The dataset spans 6980 BCE (8880 BP) to 2015 CE
with a five-year temporal resolution. All samples from the Alps under-
went cellulose extraction (Ziehmer et al., 2018) and were analyzed for
δ18O isotopes at the University of Bern with 0.3‰ analytical precision.
In this study, we use data for the past 6000 years only as the earlier data
exhibit unusual variability, which requires special corrections (Arosio
et al., 2024). The TRSI dataset from Japan contains 66 trees covering
2600 years (Nakatsuka et al., 2020). Most samples are Japanese cypress
(Chamaecyparis obtusa) alongside other conifers like Chamaecyparis

Fig. 1. Age-related plots of tree ring cellulose δ18O records from Central Europe, the Alps and Japan. Gray lines represent individual tree ring δ18O series, while the
blue lines show the mean series for each region. The bottom axis for each region displays the number of tree ring series. The δ18O‰ values are relative to the SMOW
standard. The Central European record has a mean length of 102 years (median 94 years), the Alpine record has a mean length of 196 years (median 175 years), and
the Japan record has a mean length of 338 years (median 171 years).
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pisifera, Sciadopitys verticillata, and Cryptomeria japonica. Cellulose was
extracted with the Kagawa method (Kagawa et al., 2015) and isotopes
were measured on a TCEA/Delta V Advantage mass spectrometer with
0.15‰ analytical precision. The characteristics of the three datasets are
summarized in Fig. 1 δ18O is a measure of the deviation in the ratio of
stable isotopes oxygen-18 (18O) and oxygen-16 (16O), and is defined as
the deviation in "per mil" (‰, parts per thousand) between a sample and
a standard. The δ18O results are reported in per mil (‰) relative to
Vienna Standard Mean Ocean Water (VSMOW) for oxygen (Coplen,
1994).

2.2. Age-related trends in raw measurements

To investigate potential age-related trends, we aligned all individual
TRSI series by their innermost ring measured. This cambial age align-
ment does not account for any pith offset that could affect the absolute
ages assigned to each ring. We calculated mean δ18O values for ring
number only if the sample replication was higher than six. The resulting
mean time series represents the population-level δ18O variability as a
function of tree age. This approach enables the examination of juvenile
effects and other biological trends in the stable isotope ratios without
making assumptions about year-to-year correspondence among the

Fig. 2. Schematic δ18O pseudo-proxies of three cohorts to illustrate the five correction methods. Each panel shows pseudo-proxies tree-ring δ18O series (gray lines)
before (left column) and after (right column) applying the specified correction method. Colored arrows highlight examples of corrections made to individual series.
Horizontal dotted lines represent the mean of each individual series, while solid horizontal lines show the mean of the composite chronology at corresponding time
points across aligned series.
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individual series. None of the datasets exhibited evident long-term
trends associated with cambial age (Fig. 1).

2.3. Methods for generating multi-centennial chronologies

Raw Data (method a, RAW-D): The uncorrected raw data from indi-
vidual series are averaged to create the chronology. This method is
frequently used in multi-millennial chronologies, such as the 6700-year
record from the Tibetan Plateau (Yang et al., 2021) and millennial
chronologies in Central Europe (Büntgen et al., 2021). No adjustments
or standardization procedures are applied, preserving the original
measurements.

Cohort Correction (method b, CO–CO): Proposed by Hangartner et al.
(2012), and employed by Naulier et al. (2015) for a millennium-long
chronology with a specific sampling strategy. This method CO–CO cor-
rects offsets between different cohorts of tree-ring data. Adjustments are
made to the mean values in the overlapping periods, aligning the older
cohort’s mean with that of the more recent one, while maintaining the
original variance. The objective is to harmonize data across different
trees or time periods, thereby creating a standardized chronology devoid
of biases from overlapping data.

Interactive Mean Correction (method c, IN-CO): Proposed and applied
by Nakatsuka et al. (2020) and employed by Nagavciuc et al. (2022).
This iterative method is based on the recalculation of mean tree-ring
values, addressing discrepancies between individual tree means and a
rolling mean of the entire dataset. The process is repeated until

successive iterations yield negligible changes, indicating that the chro-
nology has stabilized and is no longer subject to internal variability.

Outlier Correction (method d, OU-CO): Proposed and applied by
Arosio et al. (2024). This method targets outliers, which are time series
that significantly diverge from most observations. Outlier trees are
detected by calculating the chronology mean value plus or minus the
variance from the calibration period. Trees with a mean value outside of
this range are marked as outliers and are adjusted with an iteractive
process. More specifically, half of the difference between the chronology
and outlier tree mean values was subtracted, and this process was
repeated until all outliers were removed.

Normalization (method e, NORM): this method is commonly used for
shorter chronologies (Table 1). Each series is corrected such that its
mean value is zero, without altering the variance within the series. This
normalization ensures that all data series contribute equally to the final
chronology, thereby facilitating the comparison between series and
enhancing the overall reliability of the composite chronology.

2.4. Comparative analysis of chronologies

To assess the differences between the chronologies, a correlation
analysis (Table 2), a low-frequency analysis (Fig. 6), a spectral analysis
(Fig. 7), and a distribution probability analysis were conducted (Fig. 8).
The Pearson correlation analysis was carried out between RAW-D and
normalized NORM chronologies versus the three other correction
methods: CO–CO, IN-CO, and OU-CO, for the three regions considering
the time period 0 to 2000 CE.

The low-frequency analysis involved filtering the chronologies with
a 300-year spline. This allowed the centennial to millennial-scale vari-
ations in the chronologies to be highlighted. The results were then
compared by site (Fig. 6a, b, c) and by method (Fig. 6d,e,f,g,h).

Spectral power analysis, conducted through the fast Fourier trans-
form method, is also a way to explore the frequency and power distri-
butions of time series (Bloomfield and Nychka, 1992). The spectral
power was calculated for each chronology, considering the time period
0 to 2000 CE. The results were then grouped by site (Fig. 6a, b, c) and by
method (Fig. 6d,e,f,g,h).

The values and probability density were calculated for each chro-
nology. Boxplots representing the distribution of values for different
chronologies at different sites (Fig. 8a). The boxplot compactly displays
the distribution of a continuous variable showing the median, two
hinges and two whiskers (McGill et al., 1978). The kernel probability
density was calculated for each chronology and was grouped and pre-
sented separately for each site (Fig. 8b). The statistical analysis was done
on R studio software.

3. Results

None of the datasets exhibited evident long-term trends associated
with cambial age (Fig. 1).The Central European and the Alpine data-
sets exhibit uniformly time series segmented lengths, showing higher
sample replication in recent times (1800–2000 CE) (Figs. 3f and 4f),
while the Japanese dataset displays irregular segmentation with longer
samples post-1300 CE (Fig. 5f).

In the Central European dataset (Fig. 3), methods IN-CO and OU-CO
mirrored the original RAW-D results closely, while CO–CO produced a
distinct chronology, and NORM preserved only high-frequency signals.
A similar pattern was observed when correcting the Alpine dataset: OU-

Table 1
Description of the five Correction techniques methods.

Method Names Abbreviation Description References and
uses

a Raw data RAW-D No corrections (Büntgen et al.,
2021; Kirdyanov
et al., 2008;
Pumijumnong
et al., 2020; Yang
et al., 2021)

b Cohort
correction

CO–CO The old tree is
corrected to
the young trees
in the
overlapping
period

(Gagen et al.,
2012; Hangartner
et al., 2012;
Naulier et al.,
2015)

c Interactive
mean
correction

IN-CO The mean of
the tree is
corrected to
the chronology
mean

(Nagavciuc et al.,
2022; Nakatsuka
et al., 2020)

d Outliers
correction

OU-CO Only the
outlier trees
are corrected

(Arosio et al.,
2024; McCarroll
and Loader,
2004)

e Normalization NORM All the trees
are corrected
to have the
mean of 0

(Arosio et al.,
2022; Esper et al.,
2018; Labuhn
et al., 2016; Sano
et al., 2023;
Sidorova et al.,
2019; Wang et al.,
2020; Xu et al.,
2019; Zhao et al.,
2023)

Table 2
Correlation analysis (Pearson correlation coefficient, r) between the methods. *** indicates p-values <0.001.

Central Europe Alps Japan

CO–CO IN-CO OU-CO CO–CO IN-CO IN-CO CO–CO IN-CO OU-CO
RAW-D 0.80*** 0.78*** 0.98*** 0.99*** 0.69*** 0.68*** 0.45*** 0.98*** 0.78*** 0.82*** 0.96*** 0.97***
NORM 0.56*** 0.85*** 0.85*** 0.47*** 0.69*** 0.55*** 0.51*** 0.86*** 0.84***

T. Arosio et al.
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CO maintained the RAW-D chronology’s integrity, IN-CO and CO–CO
resulted in significantly different chronology, and NORM preserved
high-frequency variability only. For the Japanese dataset (Fig. 5),
neither IN-CO nor OU-CO significantly modified the RAW-D outcome,
while CO–CO created a distinct shape in the chronology up to approxi-
mately 1300 CE. These observations highlight varied impacts, which
each correction method has on dendrochronological data, with IN-CO
and OU-CO showing minimal deviation from RAW-D, and CO–CO
introducing distinct alterations.

Correlation anlysis (Table 2) show that for the Central European
dataset, the RAW-D chronology closely aligned with OU-CO (r = 0.99)
and IN-CO (r = 0.98), but less so with CO–CO (r = 0.79). NORM showed
a high correlation with IN-CO (r = 0.86), slightly less with OU-CO (r =
0.85), and notably lower with CO–CO (r = 0.57), the correlation be-
tween RAW-Dwith NORM is 0.80. In theAlpine dataset, RAW-D had the
highest correlation with OU-CO (r = 0.98), significantly lower with

CO–CO (r = 0.68) and IN-CO (r= 0.45). NORM’s correlation with RAW-
D was modest (r= 0.52), highest with IN-CO (r= 0.69), followed by OU-
CO (r = 0.55), and lowest with CO–CO (r = 0.45); the correlation be-
tween RAW-D with NORM is 0.69.

The Japanese dataset showed RAW-D most closely correlated with
IN-CO (r= 0.98) and OU-CO (r= 0.97), and less with CO–CO (r= 0.82).
NORM exhibited a high correlation with IN-CO (r = 0.86) and OU-CO (r
= 0.84) and lowest with CO–CO (r = 0.51), indicating varied degrees of
similarity and divergence among the methods across datasets. The cor-
relation between RAW-D and NORM is 0.78.

3.1. Low-frequency analysis

To analyze the low-frequency, a 300-year spline was applied to the
chronologies. This approach highlighted the impact of correction
methods on generating long-term trends and variability over centuries

Fig. 3. Central European Chronology Corrections. Panels a to e present the dataset after a correction has been applied, with individual time series represented in gray
and the aggregate average in the following colors: raw data (brown), cohort correction (red), interactive mean correction (black), correction of outliers (blue), and
normalization (green). Panel f shows the temporal distribution of individual time series.

T. Arosio et al.
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to millennia. In the Central European dataset (Fig. 7a), the RAW-D, IN-
CO, and OU-CO methods produced similar low-frequency signals, sug-
gesting a consistency in capturing long-term trends. However, the
NORMmethod significantly removed these low-frequency signals, while
the CO–CO method revealed more pronounced trends than the other
methods. For the Alpine dataset (Fig. 7b), RAW-D and OU-CO methods
showed congruence in low-frequency signal representation. The IN-CO
method’s results diverged, and like as in Central Europe, NORM
largely eliminated low-frequency signals. The IN-CO method applied to
the Alpine dataset displayed distinct downward and upward trends,
which become stronger as the iteration is repeated more times (S1). The
Japanese dataset exhibited similar patterns to Centraler Europe in
terms of the near-complete removal of low-frequency signals by the
NORM method and a unique signal profile produced by the CO–CO
method (Fig. 7c).

Overall, the NORM method consistently removed low-frequency
signals (Fig. 7h), whereas the CO–CO method consistently introduced
or highlighted distinct long-term trends.

3.2. Spectral analysis and autocorrelation analysis

To understand how the spectral profiles of the chronologies are
affected by the correction methods, we conducted a spectral analysis
comparing different methods (Fig. 7a, b and c), and regions (Fig. 7d, e, f
and g). At all three sites, all the chronologies increased the spectral
power with increasing periods. In all chronologies in the Alpine and
Centeal European datasets (Fig. 7a, b), the power increased with the
period in, except for the NORM method, which reduced the spectral
power over periods longer than the average segment length. In the
Japanese dataset (Fig. 7c)., the power of the signal did not increase with
the period. In the cross-region comparison (Fig. 7d, e, f and g), the
Alpine dataset showed a reduced power at the low frequencies in all
chronologies.

The autocorrelation analysis (Table 3) indicates that across all three
datasets, method CO–CO has the highest autocorrelation, while
normalization has the lowest. Methods IN-CO and OU-CO have similar
autocorrelation values compared to the RAW-D data chronology.

Fig. 4. Alpine Chronology Corrections. Panels a to e present the dataset after a correction has been applied, with individual time series represented in gray and the
aggregate average in the following colors: raw data (brown), cohort correction (red), interactive mean correction (black), correction of outliers (blue), and
normalization (green). Panel f shows the temporal distribution of individual time series.

T. Arosio et al.
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3.3. Mean value and density distribution

The box plot (Fig. 8a) shows that the values of the final chronologies
obtained by the five correction methods and from the three sites are
generally within a similar range, except for the NORM method. For the
NORM method, the mean value is 0, while the CO–CO and IN-CO
methods notably alter the values in the Alpine dataset compared to
the other methods and sites. Density distribution analysis (Fig. 8b) re-
veals that while most methods produce similar distribution shapes,
NORM results in distributions with shorter tails. In contrast, CO–CO is
associated with longer tails and lower density near the mean. The IN-CO
and OU-CO methods maintain density distributions closely resembling
that of the RAW-D method, illustrating the nuanced effects of each
correction method on the final chronology.

4. Discussion and conclusions

Different procedures to develop a chronology from raw TRSI mea-
surements have been proposed. In our study, five correction methods

have been applied to three different multi-millennial-long TRSI datasets,
which resulted in different chronologies. To date, four studies have
compared different methods but they used either a single dataset or
short chronologies (Gagen et al., 2012; Hangartner et al., 2012; Helama
et al., 2018; Labuhn et al., 2016). Our study is the first that applies,
compares and evaluates five correction methods to three
multi-millennial-long TRSI datasets. The three δ18O datasets exhibit no
evident long-term age trends, as shown in Fig. 1, consistent with pre-
vious studies (Arosio et al., 2020; Büntgen et al., 2020; Nakatsuka et al.,
2020). They display distinct characteristics: the Japanese dataset spans
the past twomillennia, with fewer yet older trees; the Central European
dataset also covers two millennia but includes trees with shorter life
spans, whereas the Alpine dataset extends over six millennia.

The RAW-D method (Fig. 2a) is the most reliable for capturing low-
frequency variabilities. However, the presence of outlier trees causes
step changes in the composite record at beginning and end of the time
series and thus affects the short-term variability. We found evident
outlier trees in the Alpine dataset around 500 CE and in the Japanese
dataset around 700 CE. When using this method, we recommend

Fig. 5. Japan Chronology Corrections. Panels a to e pesent the dataset after a correction has been applied, with individual time series represented in gray and the
aggregate average in the following colors: raw data (brown), cohort correction (red), interactive mean correction (black), correction of outliers (blue), and
normalization (green) Panel f shows the temporal distribution of individual time series.

T. Arosio et al.
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analysing the influence of geographical variables and outliers in the
δ18Omean values data to ensure that the trends are not affected by them.
This method was utilized in a 6700-year precipitation reconstruction
based on tree-ring δ18O from the Tibetan Plateau (Yang et al., 2021) and
a 2000-year hydroclimate reconstruction for Central Europe based on
carbon and oxygen tree-ring isotopes (Büntgen et al., 2021), both
datasets characterized by using a single tree species in a confined area.

Other methods have been developed to capture low-frequency sig-
nals and reconstruct millennial climate trends from more heterogeneous
datasets without introducing steps due to averaging.

The CO–CO method (Fig. 2 b) assigns a high weight to the small
overlap segments between series. It was suggested that frequencies that
exceed the single segment should be preserved if the overlap periods are
long enough to share a common variance (Hangartner et al., 2012). We
found that this method produces a chronology that mostly differs from
the output of all other methods (Figs. 3b, 4b and 5b, Table 2). This
chronology differs from the methods RAW-D, IN-CO and OU-CO also in
the low-frequency analysis (Fig. 6), and it tends to produce a different
density distribution (Fig. 7c). There are two main reasons for these
differences: the difficulty of prioritizing cohorts when there are several
series in the same period and the high weight of short time sections. In
short, a few centuries-long chronologies produced results similar to the
NORM method (Labuhn et al., 2016), but this was not found in the
present work. It has been successfully used for a 1000-year δ18O chro-
nology for paleoclimatic reconstruction with a careful selection of trees
with a constant overlap period. However, the strategy can hardly be
applied to multi-millennial tree ring records. Our results show it to be
unreliable in a standard multi-millennial TRSI dataset.

The IN-CO method (Fig. 2c) is based on the assumption that the
absolute isotope ratios of individual trees depend mainly on their loca-
tion and that the temporal variations among different trees are well
correlated due to a common regional climate signal. However, climate
changes are expected to be reflected in low-frequency variations of tree
absolute isotopic ratios (Nakatsuka et al., 2020). Our results indicate
that the method works well for an annually resolved dataset, matching
the information of the RAW-D and the NORM chronologies, as shown by
the correlation and low-frequency analyses (Table 2, Fig. 6). However, it
does not perform well with the low-time resolution datasets, such as the
Alpine dataset, where it produces a long-term trend that is opposite to
that of the chronologies produced by RAW-D and the other correction
methods (Figs. 4 and 6b). The iterative repetition makes this opposite
trend even stronger (Fig. S1). This method appears to affect the
centennial variability in the Alpine dataset, in particular the period
around 2600 BCE where it shows the highest values in the 6000 years,
higher than those of RAW-D, OU-CO and NORM chronologies (Fig. 4).
This suggests that the IN-CO method may introduce artefacts into a
chronology (Fig. 4c).

The method’s limitations in low-resolution datasets are attributed to
the reduced number of data points in the inter-series overlaps, which
results in grouping trees of the same time with similar averages and
creating jumps between the overlap periods. Altogether, the method
could produce reliable for building chronologies only on datasets with
annual resolution.

The IN-CO method was developed and applied for a 2600-years
hydroclimate reconstruction based on hydrogen and oxygen tree-ring
isotopes from central Japan (Nakatsuka et al., 2020) and was applied

Fig. 6. Low-frequency comparison of the past 2000yrs analyzed by regions and methods. The left panel displays the 300-year spline of the various correction
methods for each region from (a) Central Europe, (b) the Alps, and (c) Japan. Each line represents a different correction method: raw data (brown), cohort correction
(red), interactive mean correction (black), correction of outliers (blue), and normalization (green). The right panel displays the 300-year spline of various correction
methods between different regions, (d) raw data, (e) the cohort correction, (f) interactive mean correction, (g) correction of outliers, and (h) normalization. Each line
represents a different correction region: Central Europe (green), the Alps (red), Japan (blue).

T. Arosio et al.



Quaternary Science Reviews 340 (2024) 108861

9

to a 700-year TRSI chronology from Europe based on oxygen tree-ring
isotopes (Nagavciuc et al., 2022) (Table 1).

The OU-CO method (Fig. 2 d) was developed to correct outlier trees

that do not overlap with other series. It identifies the outlier trees based
on the calibration period parameters, which, in our case, are the vari-
ance of the raw data in the climate calibration period. This method is less

Fig. 7. Spectral analysis. Left panel shows a comparative spectral density analysis of the three different geographic regions: (a) Central Europe, (b) the Alps, and (c)
Japan. Each line represents a different correction method: raw data (brown), cohort correction (red), interactive mean correction (black), correction of outliers
(blue), and normalization (green). The dotted vertical line represents the median segment length, and the vertical line is the mean segment length for each dataset.
Right panel displays density analysis of the various correction methods between different regions:, (d) D raw data, (e)E the cohort correction, (f)F interactive mean
correction, (g) G correction of outliers and H(h) normalization. Each line represents a different correction region: Alps (red), Central Europe (green), the Alps (red),
Japan (blue).

Fig. 8. Analysis of the values and density distribution of the three sites produced by the different methods. Panel a shows the boxplots of the values across
the three sites of the five correction methods: method RAW-D (brown), method CO-CO (red), method IN-CO (black), method OU-CO (blue), and NORM (green). The
boxplot compactly displays the distribution of variables showing the median, two hinges and two whiskers. Panel b presents the probability density by sites; all
chronologies are corrected to have the mean value of 0. Each colour represents a different correction method, as in panel a.
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corrective than the methods CO–CO, IN-CO, and NORM. In the two
annually resolved datasets, it produces an outcome similar to that of the
IN-CO method (Fig. 6). It captures the low-frequency signals on the
lower time-resolution dataset, as the RAW-D. It was successfully applied
to retain a long-term climate signal by correcting only the "outlier trees"
that can affect the centenary variability of the raw data (Arosio et al.,
2024).

The NORM method (Fig. 2e), which has the strongest correction
among the methods, erases the noise provoked by the tree offsets. We
confirm that it erases the low frequency from the chronologies, while the
high-frequency signal is maintained only in a period shorter than the
mean tree length (Fig. 7a, b, c). It is not well-suited for the present multi-
millennial chronologies, in which the 200-yrs mean tree length is too
short to capture the multi-millennial climate variation. It is the only
method that drastically changes the mean value of the RAW-D data
(Fig. 7a), which is a baseline for comparison with other sites (Saurer
et al., 2002; Xu et al., 2024). The NORMmethod has been applied to the
shorter datasets and/or for studying high-frequency climate signals
where the low-frequency component was not the primary interest
(Labuhn et al., 2016; Sidorova et al., 2019) (Table 1).

A hypothetical ideal dataset with evenly distributed samples across
time and no major offset between samples would not require any
correction methods, but the real datasets need corrections, which affect
the final chronology, as shown in this study. The selection of the
correction method should be based on the characteristics of the dataset.
The main challenge is to preserve the low-frequency signals in TRSI
datasets with trees from different areas that may have different mean
isotopic values, considering that the replication of these datasets is
typically of 4–6 samples. Our findings advocate for an initial utilization
of raw data (RAW-D), complemented by geographical variable analysis
and validated by the absence of outlier trees. Other methods may be
appropriate under specific research questions or characteristics of the
datasets. The most robust correction, i.e. the normalization (NORM),
removes the climate signal longer than the mean segment length. The
cohort correction (CO–CO) is suited only for chronologies with constant
inter-series overlapping; the interactive mean correction (IN–CO)
method is suitable for annually resolved datasets, but it loses the in-
formation of the original data range that can be used to quantify the
error. The outliers correction (OU–CO) method is preferable for situa-
tions with lower temporal resolution, but it is also reliable for annually
resolved datasets.
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Wieland, A., Römer, P., Torbenson, M., Greule, M., Urban, O., Čáslavskỳ, J.,
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