SUPPLEMENTARY INFORMATION

Incorporating high-resolution climate, remote sensing and topographic data to map annual forest growth in central and eastern Europe

Jernej Jevšenak^{1, 2,*}, Marcin Klisz³, Jiří Mašek⁴, Vojtěch Čada⁵, Pavel Janda⁵, Miroslav Svoboda⁵, Ondřej Vostarek⁵, Vaclav Treml⁴, Ernst van der Maaten⁶, Andrei Popa^{7, 8}, Ionel Popa⁷, Marieke van der Maaten-Theunissen⁶, Tzvetan Zlatanov⁹, Tobias Scharnweber¹⁰, Svenja Ahlgrimm¹⁰, Juliane Stolz^{6, 11}, Irena Sochová^{12, 13}, Cătălin-Constantin Roibu¹⁴, Hans Pretzsch¹, Gerhard Schmied¹, Enno Uhl^{1, 15}, Ryszard Kaczka⁴, Piotr Wrzesiński³, Martin Šenfeldr¹⁶, Marcin Jakubowski¹⁷, Jan Tumajer⁴, Martin Wilmking¹⁰, Nikolaus Obojes¹⁸, Michal Rybníček^{12, 13}, Mathieu Lévesque¹⁹, Aleksei Potapov²⁰, Soham Basu²¹, Marko Stojanović¹³, Stefan Stjepanović²², Adomas Vitas²³, Domen Arnič²⁴, Sandra Metslaid²⁰, Anna Neycken¹⁹, Peter Prislan²⁴, Claudia Hartl^{25, 26}, Daniel Ziche²⁷, Petr Horáček^{12, 13}, Jan Krejza^{21, 13}, Sergei Mikhailov^{12, 13}, Jan Světlík^{21, 13}, Aleksandra Kalisty²⁸, Tomáš Kolář^{12, 13}, Vasyl Lavnyy²⁹, Maris Hordo²⁰, Walter Oberhuber³⁰, Tom Levanič^{31, 32}, Ilona Mészáros³³, Lea Schneider³⁴, Jiří Lehejček³⁵, Rohan Shetti³⁵, Michal Bošeľa³⁶, Paul Copini^{37, 38}, Marcin Koprowski^{39, 40}, Ute Sass-Klaassen^{37, 41}, Sule Ceyda Izmir⁴², Remigijus Bakys⁴³, Hannes Entner³⁰, Jan Esper⁴⁴, Karolina Janecka^{10, 45}, Edurne Martinez del Castillo⁴⁴, Rita Verbylaite⁴⁶, Mátyás Árvai⁴⁷, Justine Charlet de Sauvage¹⁹, Katarina Čufar⁴⁸, Markus Finner³⁰, Torben Hilmers¹, Zoltán Kern^{49, 50}, Klemen Novak⁴⁸, Radenko Ponjarac⁵¹, Radosław Puchałka^{39, 40}, Bernhard Schuldt⁵², Nina Škrk Dolar⁴⁸, Vladimir Tanovski⁵³, Christian Zang^{54, 1}, Anja Žmegač^{54, 1}, Cornell Kuithan⁶, Marek Metslaid⁵⁵, Eric Thurm¹¹, Polona Hafner³¹, Luka Krajnc³¹, Mauro Bernabei⁵⁶, Stefan Bojić²², Robert Brus⁵⁷, Andreas Burger¹⁰, Ettore D'Andrea^{58, 59}, Todor Đorem²², Mariusz Gławęda⁶⁰, Jožica Gričar⁶¹, Marko Gutalj²², Emil Horváth⁶², Saša Kostić⁵¹, Bratislav Matović^{51,} ²², Maks Merela⁴⁸, Boban Miletić²², András Morgós⁶³, Rafał Paluch⁶⁴, Kamil Pilch⁶⁴, Negar Rezaie⁵⁸, Julia Rieder⁵², Niels Schwab⁶⁵, Piotr Sewerniak⁶⁶, Dejan Stojanović⁵¹, Tobias Ullmann⁶⁷, Nella Waszak⁴⁰, Ewa Zin^{64, 68}, Mitja Skudnik^{2, 57}, Krištof Oštir⁶⁹, Anja Rammig¹, Allan Buras¹

²Department for Forest and Landscape Planning and Monitoring, Slovenian Forestry Institute, Slovenia

³Dendrolab IBL, Department of Silviculture and Forest Tree Genetics, Forest Research Institute, Poland

⁴Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Czech Republic

- ⁵Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Czech Republic
- ⁶Chair of Forest Growth and Woody Biomass Production, TU Dresden, Germany
- ⁷National Institute for Research and Development in Forestry "Marin Drăcea", Romania

⁸Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Romania

⁹Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Bulgaria

¹TUM School of Life Sciences, Technical University of Munich, Germany

¹⁰DendroGreif, Institute of Botany and Landscape Ecology, Greifswald University, Germany

¹¹Department of Forest Planning/Forest Research/Information Systems, Research Unit Silviculture and Forest Growth, Landesforst Mecklenburg-Vorpommern, Germany

¹²Department of Wood Science and Wood Technology, Mendel University in Brno, Czech Republic

¹³Global Change Research Institute of the Czech Academy of Sciences, Czech Republic

¹⁴Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Romania

¹⁵Bavarian State Institute of Forestry, Germany

¹⁶Department of Forest Botany, Dendrology and Geobiocoenology, Mendel University in Brno, Czech Republic

¹⁷Department of Forest Utilisation, Faculty of Forest and Wood Technology, Poznań University of Life Sciences, Poland ¹⁸Institute for Alpine Environment, Eurac Research, Italy

¹⁹Silviculture Group, Institute of Terrestrial Ecosystems, ETH Zurich, Switzerland

²⁰Chair of Forest and Land Management and Wood Processing Technologies, Estonian University of Life Sciences, Estonia

²¹Department of Forest Ecology, Mendel University in Brno, Czech Republic

²²Department of Forestry, Faculty of Agriculture, University of East Sarajevo, Bosnia and Herzegovina

²³Vytautas Magnus University, Lithuania

²⁴Department for Forest Technique and Economics, Slovenian Forestry Institute, Slovenia

²⁵Nature Rings – Environmental Research and Education, Germany

²⁶Panel on Planetary Thinking, Justus-Liebig-University, Germany

²⁷Faculty of Forest and Environment, Eberswalde University for Sustainable Development, Germany

²⁸Faculty of Forestry, Bialystok University of Technology, Poland

²⁹Department of Silviculture, Ukrainian National Forestry University, Ukraine

³⁰Department of Botany, University of Innsbruck, Austria

³¹Department of Forest Yield and Silviculture, Slovenian Forestry Institute, Slovenia

³²Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Slovenia

³³Department of Botany, Faculty of Science and Technology, University of Debrecen, Hungary

³⁴Department of Geography, Justus-Liebig-University, Germany

³⁵Department of Environment, Faculty of Environment, Jan Evangelista Purkyně University, Czech Republic

³⁶Department of Forest Management Planning and Informatics, Faculty of Forestry, Technical University in Zvolen, Slovakia

³⁷Forest Ecology and Forest Management (FEM), Wageningen University & Research, The Netherlands

³⁸Wageningen Environmental Research, Wageningen University & Research, The Netherlands

³⁹Department of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Poland

⁴⁰Centre for Climate Change Research, Nicolaus Copernicus University, Poland

⁴¹van Hall Larenstein Applied University, The Netherlands

⁴²Department of Forest Botany, Faculty of Forestry, Istanbul University-Cerrahpaşa, Turkey

⁴³Department of Forestry, Kaunas Forestry and Environmental Engineering University of Applied Sciences, Lithuania

⁴⁴Department of Geography, Johannes Gutenberg University, Germany

⁴⁵Climate Change Impacts and Risks in the Anthropocene (C-CIA), Institute for Environmental Sciences, University of Geneva, Switzerland

⁴⁶Department of Forest Genetics and Tree Breeding, Lithuanian Research Centre for Agriculture and Forestry, Lithuania ⁴⁷Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Hungary

⁴⁸Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Slovenia

⁴⁹Institute for Geological and Geochemical Research, HUN-REN Research Centre for Astronomy and Earth Sciences, Hungary ⁵⁰CSFK, MTA Centre of Excellence, Budapest, Hungary

⁵¹Institute of Lowland Forestry and Environment, University of Novi Sad, Serbia

⁵²Chair of Forest Botany, TU Dresden, Germany

⁵³Hans Em, Faculty of Forest Sciences, Landscape Architecture and Environmental Engeneering, Ss. Cyril and Methodius, University in Skopje, North Macedonia

⁵⁴Department of Forestry, University of Applied Sciences Weihenstephan-Triesdorf, Germany

⁵⁵Institute of Forestry and Engineering, Estonian University of Life Sciences, Estonia

⁵⁶Institute of BioEconomy, National Research Council, Italy

⁵⁷Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Slovenia

⁵⁸Research Institute on Terrestrial Ecosystems (IRET), National Research Council of Italy (CNR), Italy

⁵⁹National Biodiversity Future Centre – NBFC, Italy

⁶⁰Stefan Żeromski High School No 2 with Bilingual Departments in Sieradz, Poland

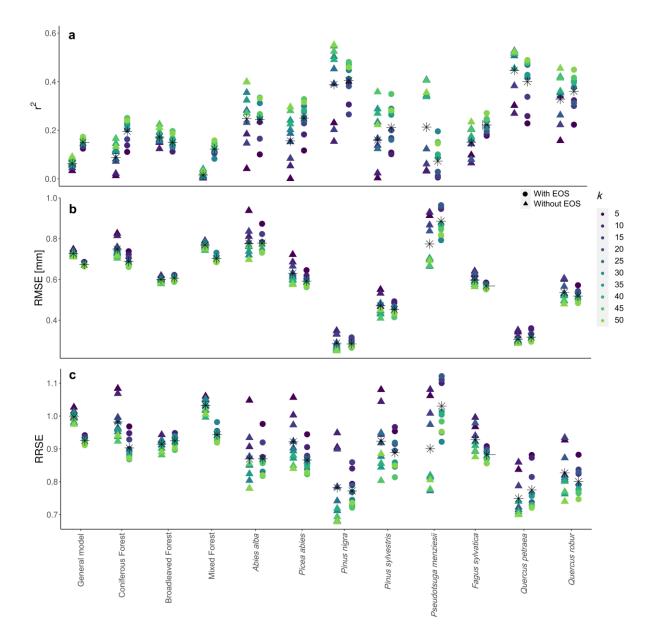
⁶¹Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Slovenia

⁶²Independent researcher, Hungary

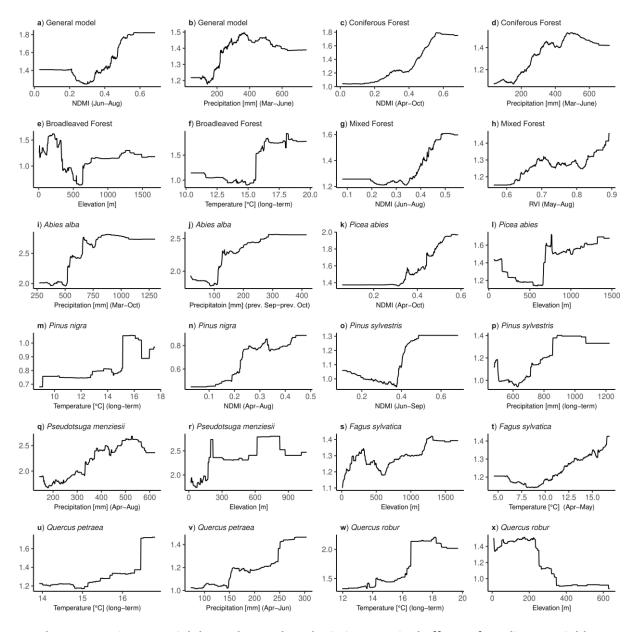
⁶³Consart Bt., Hungary

⁶⁴Dendrolab IBL, Department of Natural Forests, Forest Research Institute (IBL), Poland

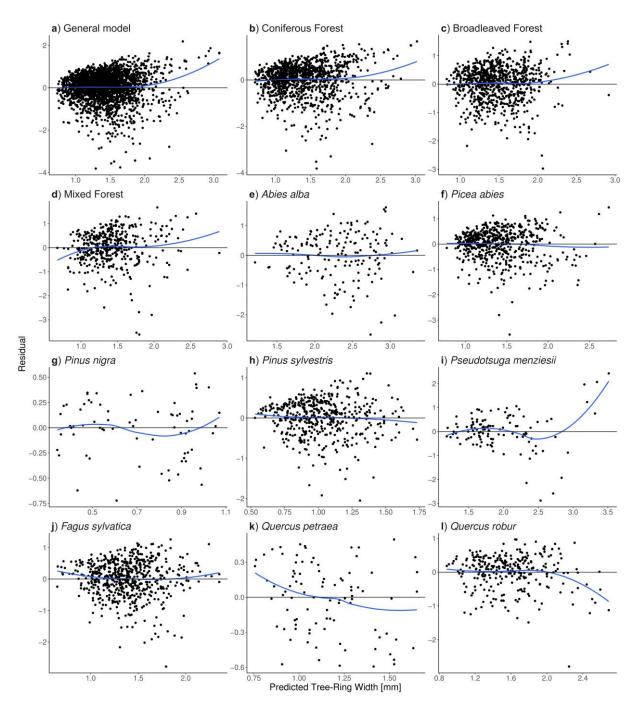
⁶⁵Centre for Earth System Research and Sustainability (CEN), Institute of Geography, Universität Hamburg, Germany

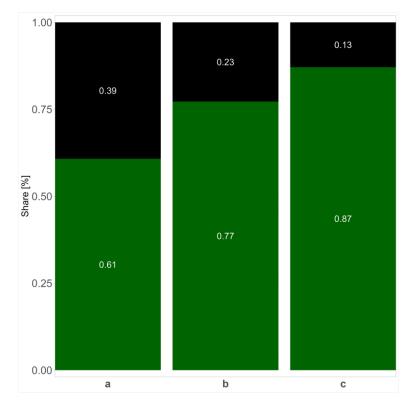

⁶⁶Department of Soil Science and Landscape Management, Nicolaus Copernicus University, Poland

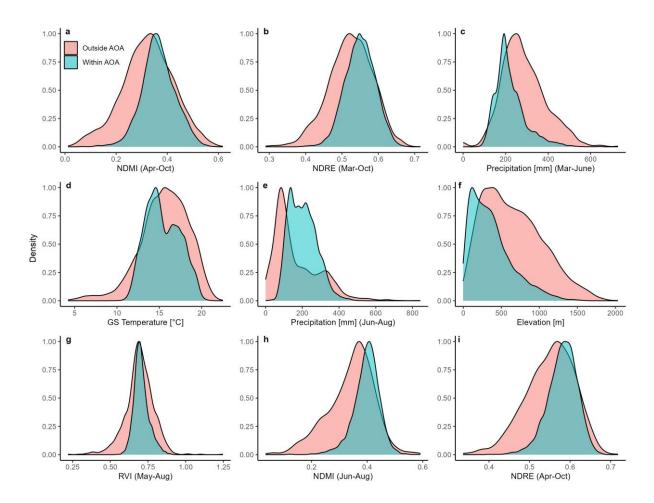
⁶⁷Department of Remote Sensing, Institute of Geography and Geology, University of Würzburg, Germany

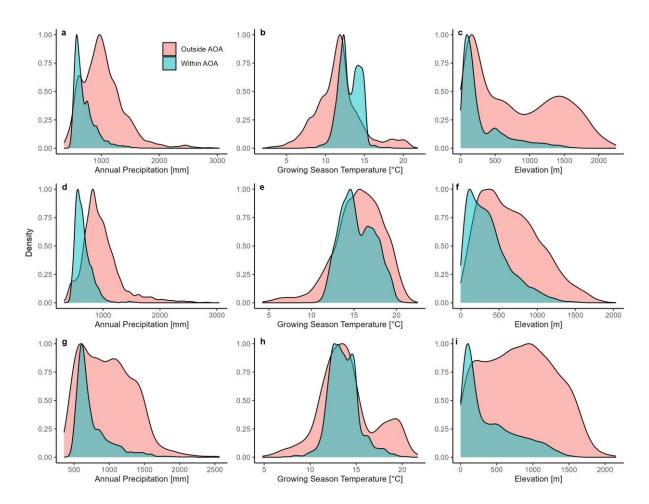

⁶⁸Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences (SLU), Sweden

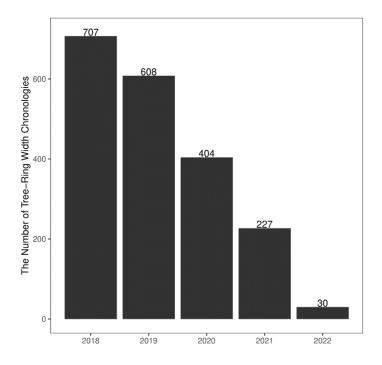
⁶⁹Faculty of Civil and Geodetic Engineering, University of Ljubljana, Slovenia


*Correspondence: jernej.jevsenak@gozdis.si


Supplementary Fig. 1: The variation in the explained variance (R^2) (**a**), root mean square error (RMSE) (**b**) and root relative square error (**c**) as a function of the chosen k in k-fold blocked cross-validation for the modelling approach with and without the inclusion of Earth observation by satellites (EOS). The "*" symbols indicate mean values.


Supplementary Fig. 2: Partial dependence plots depicting marginal effects of predictor variables on radial tree growth. For each model, we highlight two of the most important predictor variables. Vegetation indices (NDMI and RVI), seasonal temperatures and precipitation sums generally have positive relationships with tree growth. NDMI – normalised difference moisture index, RVI – radar vegetation index.


Supplementary Fig. 3: The residual plot analyses indicate minor prediction bias for large increments, which are generally underrepresented in the current TREOS network. The blue line depicts loess smoothing.


Supplementary Fig. 4: The share of pixels within (green colour) and outside (black colour) the area of applicability (AOA) for the three forest-type models: broadleaved forests (**a**), coniferous forests (**b**) and mixed forests (**c**).

Supplementary Fig. 5: Density plots of key predictor variables within and outside the area of applicability (AOA) for predicting tree-ring width for three different forest types: conifers (**a**–**c**), broadleaves (**d**–**f**) and mixed forests (**g**–**i**). GS – long-term (2000–2022) growing season (April–September) mean temperature. NDMI – normalised difference moisture index, NDRE – normalised difference red edge index, RVI – radar vegetation index.

Supplementary Fig. 6: Density plots of long-term (2000–2022) growing season (April–September) mean temperatures and annual (January–December) precipitation sums and elevations for pixels within and outside the area of applicability (AOA) for predicting tree-ring width for three different forest types: conifers (**a**–**c**), broadleaves (**d**–**f**) and mixed forests (**g**–**i**).

Supplementary Fig. 7: Number of tree-ring width chronologies within TREOS for each year over the period 2018–2022.

Supplementary Table 1: Variable importance following the permutation principle of the 'mean decrease in accuracy' in random forest models. Relative importance was obtained by dividing variable importance by the sum of importance within each model. The long-term (2000–2022) averages for temperatures refer to the growing season (from April to September), while for precipitation and climatic water balance, they were calculated for the entire year – that is, from January to December. NDMI – normalised difference moisture index, NDRE – normalised difference red edge index, EVI – enhanced vegetation index, RVI – radar vegetation index, NDMI – normalised difference moisture index, certical) and VH (vertical–horizontal) backscattering coefficients.

Model	Variable	Importance	Relative importance
General model	NDMI (Jun–Aug)	0.08	0.24
General model	Precipitation [mm] (Mar–June)	0.06	0.18
General model	NDRE (Mar–Oct)	0.05	0.16
General model	Elevation [m]	0.03	0.11
General model	Temperature [°C] (long-term)	0.02	0.07
General model	EVI (Apr–Aug)	0.02	0.07
General model	Precipitation [mm] (pr.Sep-pr.Oct)	0.02	0.06
General model	RVI (Mar–Jun)	0.02	0.05
General model	Temperature [°C] (Apr–May)	0.01	0.04
General model	VV (Apr–May)	0.01	0.03
Coniferous Forest	NDMI (Apr–Oct)	0.10	0.26
Coniferous Forest	Precipitation [mm] (Mar–June)	0.06	0.17
Coniferous Forest	NDRE (Mar–Oct)	0.06	0.15
Coniferous Forest	Elevation [m]	0.05	0.13
Coniferous Forest	EVI (Apr–Aug)	0.05	0.13
Coniferous Forest	Precipitation [mm] (pr.Sep–pr.Oct)	0.02	0.06
Coniferous Forest	VV (May–Aug)	0.02	0.05
Coniferous Forest	RVI (Mar–Jun)	0.02	0.05
Broadleaved Forest	Elevation [m]	0.18	0.41
Broadleaved Forest	Temperature [°C] (long-term)	0.11	0.24
Broadleaved Forest	Precipitation [mm] (Jun–Aug)	0.06	0.14
Broadleaved Forest	Precipitation [mm] (pr.Sep-pr.Oct)	0.05	0.12
Broadleaved Forest	Precipitation [mm] (long-term)	0.03	0.07
Broadleaved Forest	Temperature [°C] (Apr–May)	0.01	0.03
Mixed Forest	NDMI (Jun–Aug)	0.12	0.44
Mixed Forest	RVI (May–Aug)	0.04	0.15
Mixed Forest	NDRE (Apr–Oct)	0.03	0.11
Mixed Forest	VH (Jun–Aug)	0.02	0.07
Mixed Forest	Water Balance (Jul–Aug)	0.02	0.07
Mixed Forest	Elevation [m]	0.01	0.05
Mixed Forest	VH (Apr–May)	0.01	0.04
Mixed Forest	Precipitation [mm] (Jun–Aug)	0.01	0.04
Mixed Forest	EVI (Apr–Aug)	0.01	0.03
Abies alba	Precipitation [mm] (Mar–Oct)	0.18	0.40
Abies alba	Precipitation [mm] (pr.Sep–pr.Oct)	0.10	0.22
Abies alba	Elevation [m]	0.06	0.13
Abies alba	RVI (Mar–Jun)	0.05	0.12
Abies alba	Water Balance (Apr–May)	0.05	0.11
Abies alba	NDRE (Jun–Aug)	0.01	0.02

continues on the next page ...

 continued	

Model	Variable	Importance	Relative importance
Picea abies	NDMI (Apr–Oct)	0.13	0.38
Picea abies	Elevation [m]	0.06	0.18
Picea abies	Precipitation [mm] (Apr–Jun)	0.05	0.13
Picea abies	Precipitation [mm] (long-term)	0.04	0.10
Picea abies	NDRE (Mar–Oct)	0.03	0.08
Picea abies	EVI (Mar–Oct)	0.02	0.05
Picea abies	RVI (Apr–Aug)	0.02	0.05
Picea abies	Precipitation [mm] (Jul–Aug)	0.01	0.04
Pinus nigra	Temperature [°C] (long-term)	0.05	0.40
Pinus nigra	NDMI (Apr–Aug)	0.04	0.32
Pinus nigra	VH (Jul–Aug)	0.03	0.25
Pinus nigra	VV (Apr–May)	0.00	0.03
Pinus sylvestris	NDMI (Jun–Sep)	0.07	0.33
Pinus sylvestris	Precipitation [mm] (long-term)	0.03	0.14
, Pinus sylvestris	Elevation [m]	0.03	0.13
, Pinus sylvestris	RVI (Mar–Jun)	0.02	0.10
Pinus sylvestris	EVI (Apr–Oct)	0.02	0.09
Pinus sylvestris	Precipitation [mm] (Mar–Aug)	0.02	0.08
Pinus sylvestris	Water Balance (long-term)	0.02	0.07
, Pinus sylvestris	Temperature [°C] (pr.Sep–pr.Oct)	0.01	0.06
Pseudotsuga menziesii	Precipitation [mm] (Apr–Aug)	0.14	0.52
Pseudotsuga menziesii	Elevation [m]	0.09	0.34
Pseudotsuga menziesii	Water Balance (long-term)	0.03	0.13
Fagus sylvatica	Elevation [m]	0.05	0.21
Fagus sylvatica	Temperature [°C] (Apr–May)	0.03	0.15
Fagus sylvatica	Precipitation [mm] (Apr–Jun)	0.03	0.14
Faqus sylvatica	EVI (Apr–Aug)	0.03	0.12
Fagus sylvatica	NDRE (Mar–Sep)	0.03	0.11
Fagus sylvatica	Precipitation [mm] (pr.Sep–pr.Oct)	0.02	0.10
Fagus sylvatica	NDRE (Jun–Sep)	0.01	0.05
Fagus sylvatica	Precipitation [mm] (long-term)	0.01	0.05
Fagus sylvatica	Temperature [°C] (pr.Aug–pr.Oct)	0.01	0.04
Faqus sylvatica	NDMI (Mar–Sep)	0.01	0.04
Quercus petraea	Temperature [°C] (long-term)	0.05	0.51
Quercus petraea	Precipitation [mm] (Apr–Jun)	0.03	0.32
Quercus petraea	Elevation [m]	0.01	0.06
Quercus petraea	Precipitation [mm] (pr.Aug–pr.Oct)	0.01	0.05
Quercus petraea	Precipitation [mm] (long-term)	0.01	0.05
Quercus robur	Temperature [°C] (long-term)	0.25	0.56
Quercus robur	Elevation [m]	0.07	0.16
Quercus robur	VV (Jul–Aug)	0.05	0.12
Quercus robur	Temperature [°C] (Apr–May)	0.02	0.06
Quercus robur	Precipitation [mm] (Jul–Aug)	0.02	0.06
Quercus robur	Precipitation [mm] (Mar–June)	0.01	0.03
Quercus robur	NDRE (Mar–Aug)	0.01	0.02