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ABSTRACT: Since the Paris Agreement, climate policy has focused on 1.58 and 28C maximum global warming targets.
However, the agreement lacks a formal definition of the nineteenth-century “pre-industrial” temperature baseline for these
targets. If global warming is estimated with respect to the 1850–1900 mean, as in the latest IPCC reports, uncertainty in
early instrumental temperatures affects the quantification of total warming. Here, we analyze gridded datasets of instru-
mental observations together with large-scale climate reconstructions from tree rings to evaluate nineteenth-century base-
line temperatures. From 1851 to 1900 warm season temperatures of the Northern Hemisphere extratropical landmasses
were 0.208C cooler than the twentieth-century mean, with a range of 0.148–0.268C among three instrumental datasets.
At the same time, proxy-based temperature reconstructions show on average 0.398C colder conditions with a range of
0.198–0.558C among six records. We show that anomalously low reconstructed temperatures at high latitudes are underrep-
resented in the instrumental fields, likely due to the lack of station records in these remote regions. The nineteenth-century
offset between warmer instrumental and colder reconstructed temperatures is reduced by one-third if spatial coverage is
reduced to those grid cells that overlap between the different temperature fields. The instrumental dataset from Berkeley
Earth shows the smallest offset to the reconstructions indicating that additional stations included in this product, due to
more liberal data selection, lead to cooler baseline temperatures. The limited early instrumental records and comparison
with reconstructions suggest an overestimation of nineteenth-century temperatures, which in turn further reduces the prob-
ability of achieving the Paris targets.

SIGNIFICANCE STATEMENT: The warming targets formulated in the Paris Agreement use a “pre-industrial”
temperature baseline that is affected by significant uncertainty in the instrumental temperature record. During the sec-
ond half of the nineteenth century, much of the continental landmasses were not yet covered by the observational sta-
tion network and existing records were often subject to inhomogeneities and biases, thus resulting in uncertainty
regarding the large-scale mean temperature estimate. By analyzing summer temperature reconstructions from tree-
rings for the Northern Hemisphere extratropical land areas, we examine an independent climate archive with a typically
broader and more continuous spatial extent during the “pre-industrial” period. Despite the additional uncertainty
when using climate reconstructions instead of direct observations, there is evidence for an overestimation of land tem-
perature during the summer season in early instrumental data. Colder early instrumental temperatures would reduce
the probability of reaching the Paris targets.
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1. Introduction

With the United Nations’ decision to adopt the Paris Agree-
ment at the 21st Conference of the Parties, climate change re-
search was motivated to address the newly defined target of
limiting global warming to less than 1.58C above “pre-industrial
levels” (Allen et al. 2019; Jehn et al. 2021; Knutti et al. 2016).
However, the Paris Agreement does not define a particular

temperature nor a time period that could serve as a reference
(Hawkins et al. 2017; Schurer et al. 2017). The Fifth IPCC Assess-
ment Report (AR5), published 2 years earlier, reports the
likelihood for crossing the 1.58 and 28C thresholds relative to the
1850–1900 period in the summary for policymakers (IPCC 2013)
without using the term “pre-industrial” for referring to this tem-
perature baseline (Kirtman et al. 2013). The IPCC’s Special
Report on Global Warming of 1.58C and the Sixth IPCC Assess-
ment Report (AR6) closes this gap by describing the 1850–1900
period as an “approximate” (Allen et al. 2019) and “pragmatic
choice” (Chen et al. 2021) for global warming estimates from
“pre-industrial” to modern times. However, the wording indicates
that using this period is a compromise. There is evidence that
global warming was occurring before the second half of the nine-
teenth century (Hegerl et al. 2007; Schurer et al. 2013; Abram et al.
2016), implying that a baseline from 1850 to 1900 cannot reflect

Supplemental information related to this paper is available
at the Journals Online website: https://doi.org/10.1175/JCLI-D-22-
0806.s1.

Corresponding author: Lea Schneider, lea.schneider@geogr.uni-
gießen.de

DOI: 10.1175/JCLI-D-22-0806.1

Ó 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding
reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

S C HN E I D ER E T A L . 626115 SEPTEMBER 2023

https://orcid.org/0000-0002-8208-7300
https://orcid.org/0000-0002-8208-7300
https://doi.org/10.1175/JCLI-D-22-0806.s1
https://doi.org/10.1175/JCLI-D-22-0806.s1
mailto:lea.schneider@geogr.uni
http://www.ametsoc.org/PUBSReuseLicenses


the total accumulated anthropogenic impact. AR6 estimates early
anthropogenic warming (1750–1850) derived from different lines
of evidence with 0.186 0.28C (Gulev et al. 2021; Chen et al. 2021).
To include such early warming signals, Hawkins et al. (2017) sug-
gest a baseline from 1720 to 1800 as a period physically most simi-
lar to the current state of the climate system yet still free of
anthropogenic forcing. But with only a few long instrumental re-
cords from Europe it is impossible to determine global mean tem-
peratures for this truly preindustrial period using these data alone.
In ensembles of simulations from different general circulation mod-
els, temperature warms 0.08–0.28C (5%–95%) between the prein-
dustrial reference 1401–1800 and the 1850–1900 period (Schurer
et al. 2017). If pre-1850 anthropogenic warming was as strong as
suggested by some of these model simulations (0.28C) this would
increase the total amount of warming. Under the RCP2.6 scenario
the probability of crossing the 1.58C target by the end of this cen-
tury would rise from 61% to 88% (Schurer et al. 2017).

In addition to a potential early anthropogenic warming, there is
also considerable uncertainty in the observed global average tem-
perature during 1850–1900. AR5 chose 1850–1900 as the warming
baseline because it is the earliest period for which global tempera-
tures can be derived from gridded datasets (Kirtman et al. 2013).
During this period the global network of temperature observa-
tions was still limited regarding its spatial coverage (Frank et al.
2007) and an international, coordinated effort of coherent mea-
surement standards for meteorological stations did not exist until
the 1870s (Daniel 1973; Edwards 2004). This makes the early esti-
mates of global mean temperatures in the nineteenth century
particularly prone to uncertainties (Jones 2016). In AR6, best esti-
mates for observed global warming between 1850–1900 and
2011–20 range from 0.978 to 1.148C depending on which instru-
mental temperature dataset is employed (Gulev et al. 2021). The
range of 0.178C between the datasets does not yet consider uncer-
tainty in the global average from single gridded products as re-
ported for example by Morice et al. (2021). If actual warming was
closer to the higher estimates, this would increase the likelihood
of crossing global warming targets.

In HadCRUT5 (Morice et al. 2021), one of the most widely
used global gridded temperature datasets, the 95% ensemble
range for 1850–1900 is on average 0.298C (Gulev et al. 2021).
The ensemble spread arises from estimating a gridded tem-
perature field with a finite number of observations, from inho-
mogeneities and biases in the measurement data, and from
statistical uncertainty (Morice et al. 2021). Jones (2016) pro-
vides a detailed description of potential biases in observations
of air temperature over land and sea surface temperature
(SST) that together make up global gridded temperature
datasets. Land and marine data are combined from two sepa-
rate datasets because of different data collection and process-
ing methods. The majority of early SSTs are derived from
ship logs and associated biases are related to the specific mea-
surement techniques and complex spatiotemporal characteris-
tics of these data (Kennedy 2014; Kent et al. 2017). Although
of smaller spatial extent, this study sets the focus on data from
land collected with a network of standardized meteorological
station recordings and compares these data to temperature re-
constructions from land-based proxy archives. The most im-
portant biases that might similarly affect the early fraction of

these surface air temperature observations are related to the
lack of measurement standards before the 1870s (Gulev et al.
2021). Prior to that date thermometers were often insuffi-
ciently sheltered from direct solar radiation because Stevenson
screens were not yet widely installed (Trewin 2010). Solar ex-
posure is more intense during summer as the thermometers
were typically installed on north facing walls sheltered from
lower wintertime solar altitudes. Parker (1994) estimates an
average extratropical bias of 10.28C during summer due to
exposure in early instrumental measurements. Some instru-
mental records entering the large-scale gridded products are
corrected for this bias (Böhm et al. 2010) whereas others are
not (Jones 2016).

While the effects of solar exposure can be estimated by re-
constructing historical measurement sites (Dienst et al. 2017),
it is more complex to assess the impact of urban heat islands
on early instrumental data. Urban heat islands are typically
related to growing populations in urbanized areas (Oke 1973;
Rizwan et al. 2008). For the last 120 years, however, the relo-
cation of stations away from the city centers can exceed the
effect of city growth (Auer et al. 2001). Indeed, Wickham et al.
(2013) found that a global average based on only “very rural”
records in the temperature dataset from the Berkeley Earth
team (Rohde et al. 2013a,b) reveals remarkably cooler
nineteenth-century temperatures (;0.18–0.48C) compared to
the full average. However, it is unclear how robust this esti-
mate is given the relatively small number of stations extend-
ing back into the nineteenth century and the multiple changes
in city size and structure over more than 100 years. The heat
capacity of a nineteenth-century city might have been smaller
compared to a modern metropolis, but long-term parallel
measurements of nearby urban and rural sites indicate that
the urban heat island effect is rather stable and independent
of temporally changing city size and structure (Jones et al.
2008). Across different temperate climates an urban heat is-
land effect of 0.58C or more was detected for small villages
during summer (Dienst et al. 2019, 2018). Statistical homoge-
nization that is used to mitigate or even remove relocation
biases in some of the temperature records might capture
some of the urban heat island effects, but in the nineteenth-
century station density is likely insufficient to successfully ap-
ply these techniques at larger spatial scales (Dienst et al. 2017;
Knerr et al. 2019).

Besides these potential biases in the underlying measurement
records, large-scale averages are affected by incomplete spatial
sampling (Cowtan and Way 2014). Temporally, this is of partic-
ular concern until the mid-twentieth century when many parts
of the world still show a lack of coverage (Jones 2016). Spatially,
data availability is particularly scarce at high latitudes, a region
for which a few long instrumental records, reanalysis data, and
cryosphere observations suggest strong temperature variability
on decadal scales (Bekryaev et al. 2010; Simmons et al. 2010).
The most recent generation of gridded global temperature fields
(Morice et al. 2021; Rohde and Hausfather 2020; Vose et al.
2021) and some complementary versions (Kadow et al. 2020;
Vaccaro et al. 2021) all address coverage issues by different
infilling techniques and AR6 concludes that interpolation of
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regions with limited or no data yields less biased estimates than
ignoring these regions (Gulev et al. 2021).

To evaluate whether the latest generation of large-scale gridded
temperature datasets sufficiently accounts for biases and uncer-
tainties in the nineteenth century, here we investigate proxy-
derived temperature estimates. Early instrumental records are
restricted to a sparse network over Europe and North America
(Rohde et al. 2013a,b) while proxy networks are more dispersed
over the mid and high latitudes of the Northern Hemisphere
(NH; Frank et al. 2007; Anchukaitis and Smerdon 2022). For mul-
ticentennial proxy reconstructions, the second half of the nine-
teenth century is a relatively recent and short interval during
which data quality is little affected by changes in the number of
proxy records and sites that could impact quality on longer time
scales (e.g., Wilson et al. 2016). We focus our analyses on the ex-
tratropical NH and extended summer season to compare spatial
patterns of reconstructed and observed estimates of pre-1900
temperature fields. By analyzing regional characteristics of tem-
perature change as well as the agreement between different tem-
perature fields over time and space, we seek to disentangle the
effects of potential biases. We do this because an erroneous base-
line for global warming would have significant implications for as-
sessing the likelihood of avoiding crossing either of the Paris
threshold temperatures.

2. Data and methods

a. Instrumental datasets

We use the three most recent versions of gridded tempera-
ture datasets that include the entire 1850–1900 period. The
latest CRUTEM5 dataset (Osborn et al. 2021) covers global
land areas at 58 3 58 resolution where near-surface tempera-
tures from meteorological stations are available. HadCRUT5
(Morice et al. 2021) covers global land and sea areas with the
same resolution, while the land fraction uses the same input
data as CRUTEM5. In contrast to CRUTEM5, however,
HadCRUT5 also incorporates statistical infilling procedures
to fill spatial gaps during times with sparse station coverage.
We here use the infilled version of HadCRUT5 to study the
effects from this statistical procedure over land areas. Grid
cells exceeding the maximum land coverage of CRUTEM5
were removed from HadCRUT5. The BEARTH dataset from
the Berkeley Earth team (Rohde et al. 2013a; Rohde and
Hausfather 2020) provides data in a 183 18 grid for land areas.

CRUTEM5, HadCRUT5, and the preceding versions of these
products use data frommeteorological stations that are mainly ho-
mogenized on the national level by National Meteorological Serv-
ices relying on the local expert knowledge about station changes
and other discontinuities that might require adjustment (Jones
et al. 2012; Morice et al. 2012; Osborn et al. 2021; Menne et al.
2018; Morice et al. 2021). With its 7983 stations, the CRUTEM5
database has expanded compared to the previous version by
about 165%. BEARTH, in contrast, uses a database of 36866 un-
adjusted station records compiled from different archives (Rohde
et al. 2013a; Rohde and Hausfather 2020). Each record is screened
for inhomogeneities with an automated algorithm. If break points
are detected, records are fragmented and the fragments are

treated as independent station records. Rather than homogeniz-
ing the individual fragments, data for the BEARTH grid cells
are calculated in an iterative process during which outlying frag-
ments or measurements are downweighted (Rohde et al. 2013a).
Menne et al. (2018) show that this method yields a difference be-
tween unadjusted and adjusted data of up to 20.28C in the late
nineteenth century showing that homogenization alone adds
considerable uncertainty in the early instrumental record. The
CRUTEM5/HadCRUT5 approach does not allow for a straight-
forward quantification of the homogenization impact.

As a result of their infilling algorithms, HadCRUT5 and
BEARTH reach their full coverage of the NH extratropical
land areas in the early twentieth and late nineteenth century,
respectively (see Fig. S1 in the online supplemental material).
In the preceding decades coverage increases strongly in
HadCRUT5 whereas BEARTH covers almost the entire land
fraction already in the 1850s. CRUTEM5, in contrast, initially
covers less than 20% of the full extent and does not reach
maximum coverage until the 1960s.

We extracted the data from the extratropical NH (358–908N)
and averaged the monthly temperatures over an extended sum-
mer season (May–August) for all three instrumental datasets.
This region and season were selected to achieve an optimal
overlap with the proxy reconstructions that are restricted to the
warm season and the mid- to high latitudes (Wilson et al. 2016;
Anchukaitis et al. 2017; Anchukaitis and Smerdon 2022). Re-
construction targets are mostly in the range of 308/408–908N and
May/June–August. For comparison with the other datasets,
BEARTH was upscaled to a 58 3 58 resolution by averaging
over the respective 25 18 3 18 grid cells. In coastal regions, grid
cells were left empty if less than half of the 18 3 18 cells were
available.

b. Comparison with reconstructions

A constantly growing network of paleoclimate proxy re-
cords and major methodological achievements, including the
use of pseudoproxy experiments to evaluate reconstructions,
Bayesian statistics, and data assimilation approaches, has im-
proved the skill and reliability of large-scale Common Era re-
constructions over the last decades (Esper et al. 2018, 2016;
Büntgen et al. 2021a; King et al. 2021; Zhang et al. 2018;
Anchukaitis and Smerdon 2022; Ljungqvist et al. 2020). Since
AR5, six annually resolved large-scale temperature reconstruc-
tions were published based on climate proxies from natural ar-
chives: Anchukaitis et al. (2017, hereafter Anc17); Büntgen et al.
(2021b, hereafter Bün21; Guillet et al. (2017, hereafter Gui17);
Schneider et al. (2015, hereafter Sch15); Stoffel et al. (2015, here-
after Sto15); and Wilson et al. 2016, hereafter Wil16). These
products cover multiple centuries and during the relatively recent
nineteenth century their predictor networks include thousands of
trees from treeline sites widely spread throughout the extratropi-
cal NH. The precisely dated tree-ring width and/or tree-ring max-
imum latewood density data reflect boreal summer temperatures
(Büntgen et al. 2021b, 2014; Wilson et al. 2016). While there
is broad agreement among these different reconstructions regard-
ing trends and extremes in centennial temperature variability,
inconsistency arises particularly prior to 1200 CE and at higher-
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frequency variability because of different reconstruction aims re-
sulting in different proxy selection schemes and methodological
choices (Büntgen et al. 2021b; Esper et al. 2018; St. George and
Esper 2019). We limit our analysis to the extratropical NH land-
mass and boreal summers because of the relatively dense net-
work of annually resolved proxy records available (Anchukaitis
and Smerdon 2022). Despite the focus on longer term variability,
annual resolution is fundamental for precise calibration with in-
strumental data. Although global temperature reconstructions ex-
ist (e.g., PAGES 2k Consortium 2019), their uncertainty in the
Southern Hemisphere and tropics is large due to the sparse proxy
network and calibration is complicated due to the inclusion of
non-annually resolved proxies.

Anc17 is a spatial field reconstruction with 58 3 58 resolu-
tion, all others are index reconstructions that target NH aver-
age temperature time series. The Anc17 dataset was used in a
filtered version that omits those grid cells without skill [nega-
tive reduction of error values, as suggested by Anchukaitis
et al. (2017)]. In a few locations Anc17 provides temperature
estimates for ocean grid cells adjacent to continents. As with
HadCRUT5, we removed those grid cells that exceed the
maximum land coverage of CRUTEM5. All index reconstruc-
tions were rescaled to the variability of the NH extratropical
summer average of CRUTEM5 during 1901–2000.

We refer to average summer temperature during the period
from 1851 to 1900 as the baseline temperature (BT). We cal-
culate BT as the mean temperature anomaly with respect to
the 1901–2000 period in time series of large-scale averages.
For the gridded products, BT was calculated as the latitude-
weighted arithmetic mean over the region from 358 to 908N.
The standard error of this mean is adjusted to the effective
sample size considering autocorrelation (WMO 1966). Agree-
ment in the low-frequency signal between instrumental and
reconstructed temperature time series was calculated with
Pearson correlations after removing year-to-year variability
with an 11-yr moving average. Correlation between gridded
products was calculated for individual grid cells with complete
coverage during 1851–1900, 1901–50, and 1939–88, respec-
tively. The last 50-yr period terminates with the recent end of
Anc17.

c. Testing the effects of coverage bias

During the first decades of the BT period, spatial coverage
differs considerably between the reconstructed and instrumental
fields. Differences in the covered land areas might to some ex-
tent explain offsets between reconstructed and instrumental BT.
Masking out reconstructed grid cells where instrumental data
are missing and vice versa harmonizes spatial coverage of large-
scale reconstructed and instrumental averages. With this experi-
ment we can also assess the effects of infilling grid cells with
temperature data from surrounding observations. We consider
the spatial extent of the CRUTEM5 dataset as the most conser-
vative network because it uses only station data that were qual-
ity controlled and provided by National Meteorological Services
without any statistical infilling for empty grid cells. This results
in a relatively small number of filled grid cells during the BT pe-
riod (Fig. S1), growing from n 5 67 in 1951 to n 5 204 in 1900.

With n5 443, the number of grid cells in the reconstructed field
is much larger and constant throughout the nineteenth and
twentieth century. Still, the number of overlapping grid cells be-
tween CRUTEM5 and Anc17 is reduced to n 5 40 in 1851, as
early instrumental data and climate-sensitive tree-ring chronolo-
gies do not tend to be collocated. To test the effects of unequal
spatial coverage, we apply a grid mask to the gridded products
that only includes those grid cells that overlap between Anc17
and CRUTEM5. This grid mask changes its size over time corre-
sponding to the growing extent of CRUTEM5 (Fig. S2). Large-
scale averages calculated from the masked datasets (“masked
averages”) cover the exact same grid cells. The reconstruction
data (Anc17 and Anc17masked) are rescaled to the instrumental
data (BEARTH and BEARTHmasked) over the twentieth
century.

3. Results

Time series of reconstructed and instrumental summer tem-
peratures over NH extratropical land areas agree in showing a
warming trend and similar decadal scale variability over the
1850–2000 period (Fig. 1a). Disagreement between individual re-
cords is largest during the BT period with positive or neutral
trends in the reconstructed time series and negative trends in the
instrumental time series HadCRUT5 and CRUTEM5. However,
in all nine instrumental and reconstructed temperature products,
BTs are lower than the average temperatures over the 1901–2000
period (Fig. 1b). Among the instrumental datasets BTs range
from 20.148C (CRUTEM5) to 20.268C (BEARTH). With an
BT estimate of 20.208C HadCRUT5 is in the middle of this
range. The temperature differences are most pronounced during
the 1851–70 period in which meteorological measurements were
not yet standardized and the network of active stations was ex-
panding from an initially sparse coverage. Among the instrumen-
tal datasets year-to-year variability during the BT period is
strongest in CRUTEM5, which is at the same time the dataset
with the lowest spatial coverage during this period (Fig. S1). The
tree-ring-based reconstructions on average indicate cooler BTs
with a wider range from 20.198C (Sto15) to 20.558C (Wil16).
The discrepancy between instrumental and reconstructed data is
again most pronounced in the early 1851–70 period. While the
BEARTH estimate is still close to the upper range of the recon-
structed temperatures, HadCRUT5 and CRUTEM5 suggest
much warmer conditions, similar to temperatures in the relatively
warm 1880s.

From a spatial perspective, there is limited agreement between
colder and warmer regions in reconstructed versus instrumental
BTs. In the only spatially resolved reconstruction, Anc17, cold
BTs are most pronounced in central Europe, northwestern Asia,
and northwestern North America (Fig. 2a). In these regions,
temperatures drop by more than 18C below the twentieth-
century mean, much cooler than any estimate in any of the three
instrumental datasets. Only few grid cells, mostly centered over
the midlatitudes of the western United States and northeastern
Europe, indicate warmer reconstructed BTs than the twentieth-
century mean. Instrumental temperatures show a similar
pattern of relatively warm temperatures in the midlatitudes
of the United States. With a maximum grid value of 0.478C,
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warmth in this region is 0.38C stronger in HadCRUT5 com-
pared to Anc17. In Europe, the reconstructed dipole of warmth
in the northeast and cold in the midlatitudes is reversed in the
instrumental datasets HadCRUT5 and BEARTH. Along the
Russian coastline of the Sea of Japan the instrumental datasets
diverge. The warm pattern present in HadCRUT5 is opposed by
a cold anomaly in BEARTH. Reconstructed BTs in this region
are very similar to the twentieth century. Notably, the tempera-
ture fields in HadCRUT5 and BEARTH appear much more ho-
mogeneous over space compared to CRUTEM5. This is a result
of the averaging and infilling procedure that uses the decorrela-
tion range between station temperatures to estimate values for
each grid.

Spatial coverage of the four gridded products differs greatly
during the BT period (Fig. 2 and Fig. S1). While coverage is
constant over time for Anc17, the coverage of CRUTEM5
strongly increases. At high northern latitudes (608–908N), the
relatively dense tree-ring network yields a spatial coverage of
Anc17 that exceeds coverage of the infilled HadCRUT5 data-
set. At midlatitudes, the Anc17 tree-ring network is more lim-
ited and the dataset covers a smaller fraction of Earth’ surface
than BEARTH and HadCRUT5. BEARTH covers the full
spatial domain apart from northeastern Siberia and western
North America. In the non-infilled CRUTEM5 dataset, only
38 cells, mostly located in Europe, are available over the full
1851–1900 period.

Potential biases in early temperature estimates can result in
reduced correlations between instrumental and reconstructed
temperatures. In particular, systematic biases that impact the
measurements in a similar way over a long time period (e.g., ex-
posure to the sun or urban heat) can alter BT, although their
effect on year-to-year variability can remain relatively small.
To emphasize decadal to centennial scale variability that strongly
affects the BT estimates, we calculated correlations with the low-
pass filtered time series. The correlation between NH average

temperatures varies over time and between different products.
The six index reconstructions all correlate strongly with the
mean of gridded instrumental data during the twentieth cen-
tury (Fig. 3a). During the BT period, however, there is no cor-
relation between the reconstructed data and HadCRUT5 or
CRUTEM5. The median correlation between BEARTH and
the reconstructions is r 5 0.69, which is still much lower than
median correlations later in the twentieth century. For the
1901–50 period, median correlations are above 0.95 in the low-
frequency domain.

Correlations between individual grid cells of Anc17 and the in-
strumental datasets reveal a large spread between strong and
weak correlations in each of the three time slots and for each da-
taset (Fig. 3b). For BEARTH, HadCRUT5, and CRUTEM5,
the median correlations during the BT period are again lower
than during the twentieth century and range from r 5 0.36
(BEARTH) to r 5 0.43 (CRUTEM5). Correlations increase for
the 1901–50 period to a range from r5 0.57 (BEARTH) to 0.78
(CRUTEM5). The high correlations observed for CRUTEM5
are, however, based on a substantially lower number of grid
cells.

The spatial distribution of correlations reveals whether the in-
crease in grid correlations over time is a result of the increase in
spatial coverage or of increasing correlation values in regions with
long instrumental data. The former could result from a proxy net-
work that often extends into remote regions with little infrastruc-
ture and a potentially late onset of instrumental measurements.
The latter could indicate a bias in early instrumental measure-
ments that improves through time. Over western and northern
Europe, correlations between HadCRUT5 and Anc17 are con-
stantly positive, as well as over northwestern Asia (Fig. 4). While
the high latitudes of North America are not (constantly) covered
with data during the BT period, this is a region of strong positive
correlation during the twentieth century. In the American midlati-
tudes, correlation is initially negative, increases in 1901–51, but

FIG. 1. Mean estimates of NH extratropical summer temperatures. (a) 11-yr smoothed reconstructions (blue) and
instrumental records (red) from 1850 to 2000. (b) Reconstructed and instrumental temperature anomalies from 1851
to 1900. Boxplots indicate the median, the 25th and 75th quantiles, and the extremes (maximum whisker length is
1.5 times the interquartile range). Colored circles represent outliers. For consistency among all instrumental and re-
constructed data, we report the arithmetic mean (black dot) only with the standard error (black error bars) of the
mean for baseline temperature estimates. The averages of all instrumental (AVGinst) and reconstructed (AVGrecon)
estimates are shown on the right side.
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decreases again in the most recent time window. Likewise, there is
no consistent improvement of the weak or negative correlations
found during the BT period in the midlatitudes of eastern Asia.
The Black Sea region in southwestern Europe is characterized by
low density in the proxy network underlying Anc17. This results
in a weak correlation with instrumental data. Disagreement is
particularly strong and widespread during the BT period but
improves in the twentieth century. The spread and the intensity
of positive correlations in Europe and in western and central
Asia increase over time. These spatial patterns are similar for
the less and, respectively, more complete datasets CRUTEM5
and BEARTH (Figs. S3 and S4).

The effects of spatial coverage on the large-scale averages are
revealed by masking experiments that homogenize the spatial
coverage of the gridded datasets. Masking reduces the offset be-
tween reconstructed and instrumental temperatures mainly dur-
ing the BT period, but also in the early twentieth century. The
masked average of Anc17 is mostly warmer than the full Anc17
average with a difference of up to 0.248C in 1866, indicating that
spatial coverage has a significant impact on the large-scale mean

and that instrumental data cover a relatively warm fraction of
the reconstructed field (Figs. 5a,b). For the BEARTH dataset,
masking has a similar effect in magnitude, but deviations from
the full average change over time from positive to negative. With
HadCRUT5, that uses the same station records as CRUTEM5,
masking results in warmer temperature estimates than the full
average (not shown).

During almost the entire period from 1859 to 1916, the
masked averages of Anc17 and BEARTH have a smaller off-
set than the full averages (Fig. 5c). Around 1870, the full aver-
ages are off by ;0.48C while the masked averages deviate
with only ;0.18C. The BEARTH BT estimate is not signifi-
cantly affected by masking with the CRUTEM5 grid mask
(BTBEARTH 5 20.278C; BTBEARTHmasked 5 20.258C), but the
difference in BTs is reduced from 0.248C (BEARTH2 Anc17) to
0.148C (BEARTHmasked 2 Anc17masked), enabling us to
assign more than one-third of the offset to an unequal spatial
coverage. During the decade 1851–60, masked averages of
Anc17 and BEARTH diverge abruptly and their previously
rather constant offset increases.

FIG. 2. Spatial patterns of baseline temperatures (1851–1900) in reconstructed and observed temperature fields. Only
grid cells that cover the full period are shown.
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4. Discussion

a. Uncertainty in the instrumental datasets

A difference in BT of 0.128C between NH extratropical land
and summer averages from BEARTH and CRUTEM5 reveals
some of the uncertainty in large-scale warming estimates derived
from these datasets. Expressed in the terminology of the IPCC
reports, warming between 1851–1900 and 1986–2005 was 0.688C
for CRUTEM5 and 0.788C for BEARTH using the seasonal and
spatial limits of this study. Obviously, the 0.108C difference
largely results from the offset in BTs. Hawkins et al. (2017) also
reported an 0.108C difference between the warming calculated
for global land and ocean (instead of NH land) temperatures
over the whole year (instead of summer only): For the same
time interval, temperatures in HadCRUT4 rose by 0.618C and in
BEARTH by 0.718C. Like CRUTEM5, the original version of
HadCRUT4 does not use infilling. AR6 reports 0.058C less

warming for global land areas if warming is calculated with the
updated and infilled HadCRUT5 dataset instead of BEARTH
(Gulev et al. 2021). This difference between HadCRUT5 and
BEARTH is again close to the offset in BTs that we found within
the spatial and seasonal limits of this study (BTdiff 5 0.068C).
However, these analogies do not imply that our interpretation of
the results can be upscaled to annual and global averages. There
might be other processes and biases impacting temperature vari-
ability in other seasons and regions and on larger spatial scales.
One of the most obvious examples is SSTs, which make up 70%
of the world’s surface. Their recording in ship logs follows a very
different protocol from land stations, resulting in specific biases
and statistical treatment. Reduced spatial coverage in high lati-
tudes might be a feature similarly impacting temperature datasets
of air temperature over land and SST (Kent et al. 2017).

BEARTH and HadCRUT5 differ in the underlying station
network while both apply infilling. The resulting large-scale

FIG. 3. Correlation between reconstructed and instrumental temperatures for different time windows after low-pass
filtering with 11-yr running means. (a) Time series of six NH extratropical reconstructions from Sch15, Sto15, Wil16,
Gui17, and Bün21 correlated with the large-scale averages of the three instrumental fields. Points denote the median
of the six correlation values and the vertical lines are the minimum and maximum. (b) Correlations between single
grid cells in Anc17 and the instrumental fields. Boxplots indicate the median, the 25th and 75th quantiles, and the ex-
tremes (maximum whisker length is 1.5 times the interquartile range). Note that the number of correlation values
varies over time and between datasets.

FIG. 4. Correlation between low-pass filtered reconstructed (Anc17) and instrumental (HadCRUT5) fields for different time intervals.
Colors indicate Pearson correlations calculated from (a) 1851–1900, (b) 1901–50, and (c) 1939–88. The last 50-yr period terminates with
the recent end of Anc17.
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temperature estimates agree well after ;1870 and diverge
strongly during the preceding decades. During this early period
BEARTH covers a larger area of the NH (Fig. S1). But an aver-
age of BEARTH with only those grid cells available in Had-
CRUT5 results in almost identical large-scale temperature
estimates as the full BEARTH average (not shown). In addition,
the offset between BEARTH and the spatially more complete
infilled HadCRUT4 dataset (Cowtan and Way 2014) is similar
to the offset between BEARTH and HadCRUT5. As sug-
gested by Rohde and Hausfather (2020), this proves that the
divergence between these two datasets is a result of differ-
ences in the underlying station network rather than an artifact
of the infilling intensity.

BEARTH and HadCRUT5/CRUTEM5 rely on different
strategies for selecting and processing station records. The more
liberal BEARTH approach results in a much larger number of
input records, and as a consequence depends more strongly
on successful nonclimatic noise or error cancellation during
temperature interpolation. In a more conservative approach,
HadCRUT5 and CRUTEM5 uses fewer and preselected station
records in order to minimize the amount of nonclimatic noise
from the very beginning. Both approaches are well justified and
should be viewed as complementary (Menne et al. 2018).

b. Agreement between instrumental and
reconstructed BTs

Large-scale reconstructions for summer temperatures add
another perspective on BTs. In contrast to the instrumental
data, the numbers of sites and trees entering the large-scale
averages from 1851 to 1900 are less variable in the proxy net-
works and the quality of the reconstructions is presumably
constant over the nineteenth and much of the twentieth cen-
tury. Only since the 1980s the tree-ring chronologies become
sparser, because much of the network was established during
the late twentieth century (Briffa et al. 2001; Schweingruber
et al. 1988). This is also one of the reasons why some recon-
structions diverge from instrumental temperatures during this
period (Fig. 1) (D’Arrigo et al. 2008). Tree-ring reconstruc-
tions estimate BTs to be lower than their instrumental coun-
terparts. The only exception to this is Sto15, a reconstruction

with an underestimated first-order autocorrelation (Esper
et al. 2018) that targeted the representation of interannual
variability versus decadal and longer trends (St. George and
Esper 2019). The detrending method, used to remove age
trends in the tree-ring measurements, can reduce the variabil-
ity in the low-frequency domain. Such methodological choices
affect not only BTs but also the temperature estimates during
the late twentieth century and are another reason for the
“divergence problem” (D’Arrigo et al. 2008; Esper and Frank
2009). Likewise, some of the spread between the other
reconstructed BTs can be explained with different recon-
struction targets (spatial domain or seasonal window) and
analytical goals (Büntgen et al. 2021b). All of the recon-
structions are associated with uncertainties arising from the
spatial sampling, from calibration biases, and from biological
memory affecting the spectral properties (Esper et al. 2018;
Schneider et al. 2015; Wilson et al. 2016). There is no consensus
for the best way to represent reconstruction uncertainties, partic-
ularly for spatial estimates, and as a consequence individual stud-
ies apply varying strategies. An estimate of the uncertainties can
be derived by comparing the reconstructed temperatures to the
instrumental counterparts in the twentieth century, when instru-
mental uncertainty is very small.

It should be noted that all temperature reconstructions
are calibrated against instrumental temperatures using the
gridded products discussed in this study or their previous ver-
sions, such as Anc17 with HadCRUT4 (Cowtan and Way
2014). Scaling and linear regression is used to transfer tree-
ring indices or their principal components into temperature
with the intrinsic assumption that the instrumental tempera-
tures are the “true” target (Frank et al. 2007). If the instru-
mental target is erroneous, the error might propagate into the
reconstruction. Due to uncertainties in the early portion of
the instrumental fields, some reconstructions use exclusively
the twentieth century for proxy calibration (Anchukaitis et al.
2017; Schneider et al. 2015). In this study, all reconstructions
were scaled to a common instrumental target outside the BT
period (see section 2) to avoid circularity.

The much warmer 1851–70 temperatures in HadCRUT5
and CRUTEM5 result in an overall decreasing trend over the

FIG. 5. Full and masked temperature averages for instrumental and reconstructed fields. Masked are those grid cells
that do not overlap between Anc17 and CRUTEM5 (Fig. S2). (a) Large-scale temperature estimates smoothed with
an 11-yr moving average. (b),(c) Differences between the unmasked and masked averages.
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BT period. This cooling is observed neither in BEARTH nor
in any of the index reconstructions for NH extratropical sum-
mers. Thus, correlation between the large-scale temperature
averages from reconstructions and instrumental records is low
for HadCRUT5 and CRUTEM5 in the low-frequency domain
(Fig. 3). BEARTH, in contrast, correlates well with most of
the index reconstructions. Correlations with Anc17 on the
level of individual grid cells are on average slightly stronger
for HadCRUT5 and CRUTEM5 than for BEARTH. Better
agreement between HadCRUT5/CRUTEM5 and Anc17 dur-
ing the twentieth century is presumably related to the fact
that the 1901–88 period from the preceding HadCRUT4 data-
set was used as the instrumental target for Anc17. Alterna-
tively, it might imply that the more conservative approach of
data screening in HadCRUT5 and CRUTEM5 results in
more robust temperature estimates during times with plenty
of station records that allow for a more rigorous screening.
During the BT period higher correlations are likely the result
of the reduced spatial coverage in HadCRUT5 and, particu-
larly, CRUTEM5 compared to BEARTH. Most available
HadCRUT5 and CRUTEM5 grid cells in the nineteenth-
century cluster over western and northern Europe, a region
that is relatively well sampled in both the instrumental and
the proxy network. Spatial correlation fields do not reveal the
reason for the correlation increase over time. Improving cor-
relations are a result of both increasing correlation values
over time (e.g., in Europe) and new, additional strongly corre-
lating grid cells in the twentieth century (e.g., in Alaska).

To further disentangle the effect of spatial coverage on the
offset between reconstructed and instrumental BTs, we har-
monized coverage to a shared portion of grid cells in the re-
constructed and instrumental fields. The masking experiments
revealed that a BT difference of 0.108C between Anc17 and
BEARTH results from the unequal spatial coverage between
these temperature fields. Northwestern North America and
most of northwestern Asia, two regions with particularly cold
estimates for BT are almost entirely masked out because
CRUTEM5 provides no or few grid cells there. Despite the
application of infilling, even HadCRUT5 and BEARTH show
no data for many of these regions. But reconstructed and in-
strumental temperatures correlate well in northwestern North
America and northwestern Asia during the twentieth century,
indicating that the local reconstructions provide robust tem-
perature estimates during the BT period, too. Instrumental
temperatures simply miss this cooling signal in the Arctic,
even though infilling helps to reduce the bias from poor spa-
tial sampling (CRUTEM5 versus HadCRUT5). The remain-
ing difference between time series of masked averages from
Anc17 and BEARTH during the BT period (after 1860) is of
a similar magnitude as differences in the twentieth century
and thus is most likely ascribed to the uncertainty in the tree-
ring-reconstructed temperature fields.

c. BT for NH land areas are likely to be colder during
summer than currently understood

Using reconstructed temperature as an independent estimate
for large-scale temperatures in the nineteenth century yields a

clear result regarding the likelihood of BT estimates from the
different instrumental datasets CRUTEM5, HadCRUT5 and
BEARTH. Our findings show that the BEARTH temperature
estimate is 0.128C cooler than CRUTEM5 and is therefore
closer to the tree-ring-reconstructed temperatures. HadCRUT5,
which uses infilling together with the CRUTEM5 station net-
work, yields a BT estimate in between the BEARTH and the
CRUTEM5 value. Our numbers agree well with the offsets re-
ported in Hawkins et al. (2017) although those authors looked
at the whole globe and annual temperatures and not only at NH
extratropical land temperatures during summer, as we have done
here. While the most obvious difference between BEARTH and
CRUTEM5 is the increased spatial coverage, this does not fully
explain the significant offset between these datasets during the
BT period. Apparently, the BEARTH BT estimate is not much
affected by grid cells outside Europe and eastern North America.
This was the result of masking BEARTH with the CRUTEM5
grid mask. Thus, the lower BT estimates in BEARTH must be
strongly influenced by the additional station records included in
the gridded product after the more liberal data selection process
that does not require prior homogenization or quality control by
National Meteorological Services. This approach could, however,
potentially introduce more uncertainty. The two most relevant
sources of error in early instrumental station records are the ex-
posure bias and the effects of urbanization (Jones 2016). The ur-
banization effect refers here to the movement of weather stations
to sites out of town and not to the additional warming from
growing cities that is often discussed for the second half of the
twentieth century (Jones et al. 2008). Both biases, exposure and
urbanization, have the potential to alter the large-scale mean to
more positive values (Brohan et al. 2006; Dienst et al. 2018;
Parker 1994; Wickham et al. 2013). If the additional station re-
cords entering the BEARTH dataset would be significantly im-
pacted by these biases, a positive deviation from CRUTEM5 in
the masking experiment would be more likely. Similarly, addi-
tional random, uncorrelated noise, potentially introduced by sta-
tion records of lower quality, would reduce the magnitude of the
BEARTH BT estimate due to noise cancellation. Instead, the
additional station records result in more negative values, likely
indicating that they are not mainly introducing biases.

A lower BT estimate is supported by the spatial distribution of
warmth and cold during the BT period. Some of the coldest re-
constructed temperatures are found in regions poorly or not at all
covered by the instrumental fields. This accounts mostly for the
high latitudes of Asia and North America. Bekryaev et al. (2010)
found a significant polar amplification after analyzing long instru-
mental station records from high latitudes. Although they found
the effect to be weaker in summer, tree-ring-reconstructed tem-
peratures seem to support a polar amplification of the nineteenth-
century cooling. This underlines the importance of temperature
estimates from high latitudes in contributing to large-scale aver-
ages. While we could show that the coverage bias explains some
of the offset between BEARTH and Anc17 temperatures, it
should be noted that other reconstructions might underestimate
BT temperature, because their proxy networks are biased toward
high-latitude tree line sites and often index reconstructions do not
adequately account for the relative spatial representation of the
underlying paleoclimate network (Anchukaitis et al. 2017).
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In addition, proxy reconstructions are accompanied by uncer-
tainty introduced during proxy selection, methodological choices,
and the model calibration processes (Büntgen et al. 2021b;
Anchukaitis and Smerdon 2022) explaining in part the large
range of proxy-based BT estimates. Spectral biases introduced
by biological memory in proxy reconstructions using tree-ring
width data (Franke et al. 2013) can result in an overestimation of
low-frequency variability and thus too low BT estimates. But
even Sch15, a reconstruction built exclusively with the more robust
temperature parameter of maximum latewood density (Schneider
et al. 2015) yields lower BT estimates than the instrumental data.
To reduce the range between reconstructed BT estimates, it is
important to construct tree-ring reconstructions in regions that
are not well covered in the proxy network (e.g., the eastern
Mediterranean). Where centennial old trees are rare even
shorter, reconstructions would be helpful in order to improve
the robustness particularly during the past 200 years. In this
study we did not use simulations from general circulation mod-
els to compare with the BT estimates. Other studies have al-
ready shown a multimodel ensemble range of approximately
0.58C for warming estimates in global annual temperatures with
HadCRUT5 in the upper middle of the model range (Hawkins
et al. 2017). This range is of similar magnitude as the maximum
and minimum BT found in this study indicating that confining BT
estimates with model simulations is a more complex endeavor.

Although we find that BEARTH is in better agreement with
proxy reconstructions, it is important to note that the BEARTH
approach is somewhat riskier and could still result in better agree-
ment for the wrong reasons if station records with a negative bias
are not corrected adequately in the automated homogenization
process. Ideally, the additional station records in the BEARTH
dataset should undergo a thorough quality assessment and individ-
ual homogenization based on station metadata. This might reduce
the offset}and thus the uncertainty}between different instru-
mental BT estimates. There is also still a lot of potential for data
rescue initiatives that collect, digitize, and merge early instrumen-
tal observations (Brönnimann et al. 2018; Hawkins et al. 2019;
Rennie et al. 2014) to have an impact on the large-scale average
of early instrumental temperatures. While we found an infilled da-
taset to be closest to the reconstructed data, it depends on the re-
search question of whether or not to prefer infilling. With the
comparison of CRUTEM5 and HadCRUT5, we could show that
infilling can impact the large-scale average to some degree. How-
ever, if regional characteristics are of interest, it can be more bene-
ficial to reduce coverage to a common field (Cowtan et al. 2018)
as in our masking experiments. Infilled instrumental datasets
showed weaker correlation with the reconstructed data, likely due
to larger errors at infilled grid cells.

5. Conclusions

The comparison of instrumental summer temperature fields
from the NH extratropical landmass with proxy reconstructions
suggests that instrumental temperatures overestimate BTs. The
BEARTH dataset yields the estimate closest to the recon-
structed values. Our analyses showed that in the first decades of
the BT period a more liberal selection approach for station re-
cords is beneficial to reduce the offset between instrumental

and reconstructed temperatures, although this introduces the
risk of integrating records of lower quality. Infilling of the in-
strumental datasets cannot fully account for poor coverage
during the BT period. Anomalously cold regions at high lati-
tudes in the reconstructed field}potentially as a result of polar
amplification}are not represented in the instrumental datasets,
leading to an increased offset between the two independent
temperature estimates. Despite considerable spread between dif-
ferent proxy-based temperature reconstructions, they all suggest
BTs to be lower than estimated by HadCRUT5 and CRUTEM5.
Cooler BTs lead to larger estimates for observed warming, which
in turn reduces the probability of reaching the 1.58C target set in
the Paris Agreement. Closer agreement within instrumental data,
within reconstructed data, and between instrumental and recon-
structed data would reduce the uncertainty associated with early
large-scale temperature estimates. We therefore emphasize the
importance of recovery and integration of early instrumental data
where such data are available. In addition, the tree-ring network
should be extended in regions with sparse coverage, even if no
trees older than 3001 years are available. Together, these ap-
proaches can reduce the gap between reconstructed and instru-
mental BTs and yield more robust forecasts for future warming
rates and climate change impacts.
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}}, }}, Ò. Saladié, and J. Esper, 2019: Detection and elimi-
nation of UHI effects in long temperature records from
villages}A case study from Tivissa, Spain. Urban Climate,
27, 372–383, https://doi.org/10.1016/j.uclim.2018.12.012.

Edwards, P. N., 2004: “A vast machine”: Standards as social tech-
nology. Science, 304, 827–828, https://doi.org/10.1126/science.
1099290.

Esper, J., and D. Frank, 2009: Divergence pitfalls in tree-ring re-
search. Climatic Change, 94, 261–266, https://doi.org/10.1007/
s10584-009-9594-2.

}}, and Coauthors, 2016: Ranking of tree-ring based tempera-
ture reconstructions of the past millennium. Quat. Sci. Rev.,
145, 134–151, https://doi.org/10.1016/j.quascirev.2016.05.009.

}}, and Coauthors, 2018: Large-scale, millennial-length temper-
ature reconstructions from tree-rings. Dendrochronologia, 50,
81–90, https://doi.org/10.1016/j.dendro.2018.06.001.
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Büntgen, and J. Esper, 2019: Addressing the relocation bias
in a long temperature record by means of land cover assess-
ment. Theor. Appl. Climatol., 137, 2853–2863, https://doi.org/
10.1007/s00704-019-02783-2.
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