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Southeast Asian ecological dependency  
on Tibetan Plateau streamflow over the  
last millennium

Feng Chen    1,2,18  , Wenmin Man    3,18, Shijie Wang1,2, Jan Esper    4,5, 
David Meko6, Ulf Büntgen5,7,8,9, Yujiang Yuan10, Martín Hadad    11, Mao Hu1,2, 
Xiaoen Zhao1,2, Fidel A. Roig12,13, Ouya Fang    14, Youping Chen1, Heli Zhang1,10, 
Huaming Shang10, Shulong Yu10, Xian Luo1, Daming He    1   & 
Fahu Chen    15,16,17 

The great river systems originating from the Tibetan Plateau are pivotal for 
the wellbeing of more than half the global population. Our understanding 
of historical ranges and future changes in water availability for much of 
Southeast Asia is, however, limited by short observational records and 
complex environmental factors. Here we present annually resolved and 
absolutely dated tree ring-based streamflow reconstructions for the 
Mekong, Salween and Yarlung Tsangpo rivers since 1000 ce, which are 
supplemented by corresponding model projections until 2100 ce. We 
show a significant positive correlation between streamflow and dry season 
vegetation indices over the Indochinese Peninsula, revealing the importance 
of the Tibetan Water Tower for the functioning and productivity of 
ecological and societal systems in Southeast Asia. The streamflow variability 
is associated with low-frequency sea-surface temperature variability in the 
North Atlantic and North Pacific. We find that streamflow extremes coincide 
with distinct shifts in local populations that occurred during medieval times, 
including the occupation and subsequent collapse of Angkor Wat from 
the eleventh to the sixteenth century. Finally, our projections suggest that 
future streamflow changes will reach, or even exceed, historical ranges by 
the end of this century, posing unprecedented risks for Southeast Asia.

The Tibetan Plateau is often referred to as the Asian water tower since 
the glacially fed rivers that flow from the plateau are a primary source 
of water for much of south and Southeast Asia, and plays an important 
role in linking hydrological cycles with ecological and socioeconomic 
systems in these great river basins1–8. The relationships between the 
upstream water resources and the diverse and widely distributed 
populations that depend on these resources across the great Asian 
transboundary river basins (that include the Mekong, Salween and 
Yarlung Tsangpo (the upper Brahmaputra) rivers) may vary on the 

different time scale; however, these relationships are not yet fully 
understood9–11. Although modern instrumental records of regional 
streamflow offer some insight into the relationships between contem-
porary local populations and water resources variability, the lack of 
reliable historical records extending beyond the instrumental period 
has resulted in debates about the role of past water resources variability 
played in the rise and decline of the indigenous civilizations that previ-
ously occupied the river basins of Southeast Asia12–15. Climatologists, 
historians and archaeologists have examined the direct and indirect 
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and Supplementary Table 2). This indicates that this tree-ring record 
provides a 1,000-year perspective on the water supply of the Tibetan 
Plateau to Southeast Asia (Fig. 1b). The long-term means of the stream-
flow reconstruction is 1,576.5 × 108 m3 for the period 1000–2018 ce. The 
reconstructed streamflow was generally low from ~1000 to 1040 ce, but 
the strongest and most persistent increase (+3.5%, 1,631.7 × 108 m3) over 
the last 1,000 years occurred from ~1050 to 1199 ce. A major decrease 
in streamflow occurred from the early thirteenth century to the early 
sixteenth century, with exceptionally low flows from ~1280 to 1330 ce 
(−2.1%, 1,544.2 × 108 m3), ~1360 to 1409 ce (−2.2%, 1,541.2 × 108 m3) and 
~1420 to 1509 ce (−4.3%, 1,509.4 × 108 m3). Although the drought during 
the fourteenth century has been referenced in contemporary national 
chronicles of Southeast Asian countries14,15,17, little attention has been 
given to the decrease in river flow that occurred on the southern Tibetan 
Plateau from the early thirteenth century to the early sixteenth century, 
though other records suggest that these decreasing trends may have 
been widespread in High Asia and may even have extended northwards 
into central China41–44 (Fig. 2). Inter-annual to multidecadal variations 
in streamflow continued until the late twentieth-century warm period, 
when streamflow began an increasing trend (+5.8%, 1,668.9 × 108 m3) 
that has continued since the 1990s. Moreover, the running variance of 
the reconstructed streamflow indicates a continuously upward trend 
(Fig. 1d), indicating streamflow has become more variable in these 
river basins.

No significant correlations with Normalized Difference Vegetation 
Index (NDVI)45 occurred in the Indochinese Peninsula during the mon-
soon season. However, together with the beginning of the dry season, 
the correlations between the streamflow reconstruction and the NDVI 
in the Indochinese Peninsula gradually increased, with the highest cor-
relation (r = 0.55, P < 0.01) observed for reconstructed streamflow and 
mean April–May NDVI of following year (Fig. 3a,b).

Streamflow links to large-scale atmospheric 
circulation
Our streamflow reconstruction is positively correlated with gridded 
instrumentally derived sea-surface temperatures (SSTs)46 of the North 
Atlantic and North Pacific Oceans from 1870 to 2018, with a strong trend 
towards high streamflow in the late twentieth century (Fig. 4a and Sup-
plementary Fig. 5). This suggests possible teleconnections between the 
regional streamflow and Atlantic multidecadal variability (AMV)47 and 
Pacific Decadal Oscillation (PDO)48. The evidence from the Community 
Earth System Model Last Millennium Ensemble (CESM-LME) and cli-
mate reconstructions indicate that the AMV47 and PDO49 may account 
for a minor but potentially important portion of the explained variance 
in regional streamflow and climate (Fig. 4b, Supplementary Figs. 6 and 7, 
and Supplementary Table 3). We also observed significant correlations 
between the simulated streamflow and simulated temperature in the 
CESM-LME outputs, and the streamflow reconstruction also corre-
sponded well (r1000–2018 = 0.49, P < 0.01) with the temperature changes on 
the eastern Tibetan Plateau, which have a robust in-phase relationship 
with the Atlantic multidecadal oscillation(AMO) during the last millen-
nium (Fig. 4c,d), indicating the important role of temperature changes 
in affecting regional streamflow50,51. A positive PDO phase weakens the 
Walker circulation and results in reduced convective activity and pre-
cipitation over the Indo-Pacific Warm Pool. This decreased latent heat-
ing further leads to a weakened South Asian monsoon via the baroclinic 
Rossby wave trains emanating from the western Pacific and, hence, to 
a reduction in the amount of water vapour transported to the eastern 
Tibetan Plateau (Fig. 4e). At the same time, positive AMV thus strength-
ens the westerly jet along the northern slopes of the Tibetan Plateau, 
thereby promoting increased precipitation across the southeastern 
Tibetan Plateau (Fig. 4f). Thus, past streamflow variations derived 
from the CESM simulations appear not to be forced directly—that is, 
they arise as a feature of changes in the internal regional climate factors 
(for example, temperature and precipitation) that linked with AMO and 

importance that climatic and environmental factors have on affecting 
societal changes within Asian transboundary river basins, with particu-
lar emphasis given to the influence of the monsoon system12–19. Since 
the eleventh century ce, several culturally distinct civilizations have 
arisen in Southeast Asia, such as the Khmer Empire, which controlled 
a large fraction of the Indochinese Peninsula. These states depended 
heavily on vast and complex rice-cultivation systems supported by 
monsoon precipitation and freshwater from streams and rivers20,21. 
Previous studies also have examined how hydroclimate more broadly 
influenced the abandonment of Angkor Wat17. However, in addition 
to summer monsoon16,17, the water resources of major river basins in 
Southeast Asia are influenced by the Tibetan Water Tower2,5, which 
provides water from the melting of snow and glaciers. Except for the 
droughts that may arise from monsoon instability, Southeast Asian 
societies were, are and will continue to be vulnerable to the hydrologic 
variability of the Tibetan Water Tower, since potential instabilities in 
that source may trigger either droughts or flooding.

To understand the influence of changes in hydroclimate variability 
on human populations, several hydroclimate simulations have been 
conducted for this region22–30. However, the complex topography 
and associated atmospheric dynamics of High Asia make it difficult 
for climatic and hydrological models to accurately simulate natural 
streamflow variability or contextualize past changes, especially con-
sidering how anthropogenic forcings influence current and predicted 
patterns22–32. These limitations cause great uncertainty in the predic-
tion of water resource changes under different future climate change 
scenarios26–30. Reliable streamflow reconstructions can be used to 
validate model outputs and estimate the potential streamflow vari-
ability under different climate conditions. Additionally, a proxy-based, 
long-term hydrological perspective is needed to validate the model out-
puts33–37. Thus, improving knowledge regarding long-term streamflow 
changes is of great importance for future predictions of the regional 
hydrological cycle. In this Article, we present a well-dated and annually 
resolved 1,000-year-long September–July streamflow reconstructions 
of the Mekong, Salween and Yarlung Tsangpo rivers, and indicate that 
the impact of streamflow from the Tibetan Plateau on the Southeast 
Asian ecological and societal systems. A comparison between our 
dendrochronology-based streamflow reconstructions and an ensemble 
of state-of-the-art Community Earth System Model (CESM)38 simula-
tions permits the identification of the mechanisms that impact these 
streamflow changes. Additionally, we consider various shared socio-
economic pathway (SSP 2-4.5 and SSP 5-8.5) scenarios to describe differ-
ent future streamflow change projections. This new record allows us to 
investigate the linkage between water supply from the Tibetan Plateau 
and Southeast Asian economies and societies over the past millennium.

Streamflow reconstruction derived from tree 
rings
The Mekong, Salween and Yarlung Tsangpo catchments have similar 
hydroclimatic conditions, and this similarity supports the compre-
hensive reconstruction of past streamflow variability using a network 
of moisture-sensitive tree-ring-width chronologies from southern 
Tibetan Plateau (Fig. 1a, Supplementary Figs. 1 and 2, and Supplemen-
tary Table 1). Instrumental streamflow data and tree-ring radial growth 
are positively correlated with gridded precipitation, temperature and 
moisture availability (scPDSI)39,40, which are obtained from the Cli-
matic Research Unit, East Anglia, United Kingdom (http://www.cru.uea.
ac.uk) (Supplementary Figs. 3 and 4). We used the annually resolved 
tree-ring-width site chronologies from ten sampling sites in the south-
ern Tibetan Plateau that encompassed ~1,000 years to develop an 
extended September–July streamflow record for the sum of the flows of 
the Mekong, Salween and Yarlung Tsangpo rivers from 1000 to 2018 ce 
using a nested principal component regression method (Methods). The 
reconstruction accounts for 42.0–61.0% of the instrumental stream-
flow variance during the 1961–2004 ce calibration period (Fig. 1b,c 
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PDO (Supplementary Figs. 8 and 9), and as a result, the simulations and 
reconstruction are uncorrelated on both the inter-annual and decadal 
scales throughout the last millennium.

Projections of future streamflow
The decadal changes in the simulated streamflow were affected by 
internal variabilities and anthropogenic forcing during the recent 

warm period 1850–2005, of which the most significant forcing fac-
tors in this interval were anthropogenic aerosols and the AMV, which 
contributed 31.6% and 20.0% of the streamflow variability, respec-
tively (Supplementary Fig. 9). Increased streamflow over the eastern 
Tibetan Plateau was also simulated by the ensemble mean of the 
Coupled Model Intercomparison Project version 6 (CMIP6) models 
during the high SST periods 1930–1950 and 1980–200546 (Fig. 4g and 
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Fig. 1 | Spatio-temporal aspects of streamflow reconstruction. 
 a, Map showing the study area and location of tree-ring sites and streamflow 
gauges in the Mekong, Salween and Yarlung Tsangpo basins. Background 
colours highlight correlations (P < 0.05, two tailed) between streamflow 
reconstruction and gridded NDVI data of the April–May dry season from  
1982 to 2019. The numbers 1, 2 and 3 denote the locations of Nuxia, Daojieba 
and Chiang Saen hydrological stations, respectively. The regions A, B, C, D, E  
and F indicate the comparison sites of southeastern Tibetan Plateau41, 
southern Vietnam17, Karakoram Mountains42, Wanxiang Cave43, Dasuopu44 and 

Brahmaputra River36, respectively. b, The full reconstruction back to 1000 
ce at annual resolution and 30-year low-pass-filtered. The grey color band 
around the reconstruction indicates the root-mean-square error (RMSE). The 
inset figure shows comparison between actual and estimated streamflow for 
the period 1960–2004. c, Explained variance (R2), RE and numbers of series 
for each segment. d, Fifty- and 100-year running bi-weighted variance for 
the streamflow reconstruction, and the percentage total variance of the first 
principal component (PC1) of the tree-ring-width chronologies.
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Supplementary Fig. 10). Future streamflow projections from CMIP6 
reveal a persistent externally driven increasing trend from the 2030s 
to the end of the twenty-first century. Whereas streamflow remains 
relatively constant from the 2060s to the 2090s considering the 
SSP2-4.5 scenario, the SSP5-8.5 scenario returns a persistent and 
increased trend throughout the twenty-first century (Fig. 4g). This 
trend can also be observed in the comparison of the kernel density 
profile of streamflow projections under different scenarios for the 
2019–2100 period with the kernel density profiles of both the instru-
mental period of 1961–2004 and the entire period of 1000–2018 
(Fig. 4h).

Streamflow and historical societal changes in 
Southeast Asia
The downstream reaches of the Mekong, Salween and Yarlung Tsangpo 
rivers comprise the most densely populated region on Earth. Although 
these catchment areas experience abundant precipitation, seasonal 
and inter-annual variability of streamflow is controlled by the Asian 
summer monsoon16,17,52,53. Since these major rivers are critical for alle-
viating water supply concerns8,54,55, it is critical to understand their 
long-term variability. The new streamflow reconstruction presented 
herein places variability into a long-term, millennium-scale context and 
provides the information needed to analyse the changing relationships 
between socioeconomic development in Southeast Asia and the water 
supply from the Tibetan Plateau both before and during the most recent 
interval of anthropogenic-induced climate alteration. Coinciding with 
the general decline in streamflow since the early thirteenth century, 
medieval empires began to fragment, the political landscape of the 
Indochina Peninsula was continuously reformed, and prototypes of 
the modern states of Thailand and Laos began to develop56–59.

The inter-regional streamflow reconstruction presented here 
reveals a strong increase in flow rate from the 1050s to the 1190s (Fig. 2).  
This increase was parallelled by rapid socioeconomic and cultural 
growth56–59, including (1) the rise of the Bagan Dynasty and the related 
unification of Burma from the 1050s to the 1070s ce, (2) the rise of the 
Khmer Empire and construction of Angkor Wat (1110s to 1150s ce), and 
(3) the conquest of the Champa in the mid-twelfth century. A trend of 
decreasing streamflow from the early thirteenth century to the late fif-
teenth century was accompanied by the intervention of external forces 
and several major challenges to the socioeconomic, political and cul-
tural systems of Southeast Asia. From 1280 to 1340 ce, the streamflow 
trend coincided with a major crisis in the Pagan Dynasty, as evidenced 
by the Mongol invasion in 1287 (ref. 59). This crisis was characterized by 
economic dislocation, political turmoil and the division of Myanmar. 
The most prolonged low-streamflow period of the past ~1,000 years, 
from 1360 to 1500 ce, coincided with collapse of the Khmer Empire and 
slow abandonment of Angkor Wat17,56,59. Through the conquest of the 
Kingdom of Champa in the low streamflow period 1470s, the territory 
of the later Lê Dynasty was expanded, which approached the size of 
modern Vietnam56,58.

Low and high streamflow periods of greater magnitude and 
duration than those in the instrumental record occurred during the 
period 1050s to 1510s. This increasing variability probably affected 
not only rice cultivation, but also local fish harvest and, thereby, the 
food provisions of the human population of Southeast Asia25 (Fig. 3c).  
This conclusion is reinforced by the positive correlations identified 
between our streamflow reconstruction data and the dry-season 
NDVI, an indirect indicator of grain yield. Whereas the high stream-
flow probably facilitated larger fish harvests60 (Supplementary Fig. 11)  
and supported the economic and political strengths required to imple-
ment major construction projects, such as Angkor Wat and Pagan 
City, the low streamflow measured from the early thirteenth century 
to the late fifteenth century were largely characterized by the limited 
fish stock associated with the demise of the Khmer Empire61 and the 
abandonment of Angkor Wat, which did not occur rapidly but rather 
was an extended process20,62,63. This is because, even though prosper-
ous nations may be more resilient and potentially more adaptive to 
climatic extremes, the influence of long-term adverse environmental 
factors may affect this resilience, and hydrological extremes may trig-
ger gradual societal changes61–63.

Although archaeological evidence indicates that already-fragile 
water systems, coupled with abrupt climatic variation, contributed to 
the demise of the city64, the role of streamflow variation in this process 
has not been revealed. Our new streamflow reconstruction suggests 
that, among the myriad stressors impacting the Khmer Empire (for 
example, summer monsoon failures and societal and political issues)17, 
their decline may also have been influenced by a long-term, ~200-year 
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interval of limited streamflow from the Tibetan Plateau. However, 
this argumentation does not suggest that hydroclimate variability 
alone is the sole driver of societal evolution in major river basins, but 
instead posits that significant long-term deviations and changes in the 
frequency of climate extremes need to be considered in addition to 
economic, ethnic, religious and cultural factors, particularly in South-
east Asia due to its complex multicultural and religious background.

Connections between streamflow and  
climatic change
Rapid increases in streamflow of the three transboundary rivers on 
the southern Tibetan Plateau beginning in the 1990s are rare but not 
without precedent over the last ~1,000 years. Comparison with regional 
tree-ring-based temperature reconstructions reveals the importance 
of this variable for the snow and glacier-derived meltwater amounts 
leaving the Tibetan Plateau (Fig. 4c,d)5,65. Our reconstruction shows 
that the amplitudes of streamflow events during the Medieval Climate 
Anomaly and Little Ice Age (LIA) exceeded those within the instrumental 
streamflow record, and this substantial difference was also probably 
related to the melting of snow and glacier ice associated with remote 
but persistent atmospheric circulation anomalies, such as the negative 
AMO phase during the Little Ice Age66,67 (Fig. 4e,f). This pattern has 
reversed during the current warm period. This suggests that streamflow 
of the river basins studied in this work is controlled by the complex 

feedback effects among the ocean, atmosphere and land that may 
create variabilities and instabilities in inter-regional hydroclimatic 
conditions, such as variabilities in the expected increases in rainfall and 
evaporation, as well as in glacier responses to rising temperatures2. Our 
study found that the AMV and PDO are important internal modes that 
contribute to the streamflow during the past millennium. Considering 
the persistence of interdecadal oscillations, improving the predic-
tive skill for internal variability modes, including the AMV and PDO, 
is expected to improve the streamflow predictions at decadal scales. 
Thus, our study calls for further understanding and prediction of the 
near-term evolutions of the AMV/PDO, and other decadal modes of 
internal variability to improve the High Asian streamflow projection 
under global warming.

Streamflow variability and the related changes in vegetation pro-
ductivity have severe impacts on the natural and agricultural eco-
systems of Southeast Asia. The socioeconomic perspectives on past 
extreme streamflow conditions reveal that past societies had some 
degree of vulnerability to changes in the water supply from the Tibetan 
Plateau. Understanding this demonstrated historical link between 
the water supply leaving the Tibetan Plateau and the socioeconomic 
development of Southeast Asia may help to strengthen scientific and 
economic cooperation among the dominant cultural groups within 
the basins and promote a transnational sustainable development 
plan. The rising streamflow trend identified herein will probably 
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Fig. 4 | Relationship of reconstructed streamflow with simulated and 
observed climate series and indices of the climate system. a, Spatial 
correlation map of the reconstructed streamflow with September–July SST46 
from 1870 to 2018. Dots denote 95% significance levels. b, Comparison of the 
reconstructed streamflow with AMV47 and PDO49 during the last millennium. 
Thick lines are 30-year low-pass filter results, and thin lines are the original 
series. c, Spatial correlation pattern of the CESM-LME simulated runoff and 
temperature38 during the last millennium. Dots denote 95% significance levels. 
d, Comparison of the reconstructed streamflow with eastern Tibetan Plateau 
temperature during the last millennium50. e, Spatial precipitation differences 
(shading, mm per day) and 500 hPa water vapour transport (vectors, kg m−1 s−1) 
between the positive PDO composite and the negative PDO compos based on the 
CESM-LME simulation during the last millennium. f, Patterns of the 200 hPa zonal 

wind (shading; m s−1) associated with the AMV index based on the CESM-LME 
simulation. Stippling indicates that the regression coefficients are significant at 
the 1% level according to the Student’s t-test. g, Time series of the 30-year running 
mean of the September–July streamflow anomaly (mm per month) during 1850–
2100 relative to the reconstruction mean (1000–2018) in the reconstruction 
(black) and historical simulations (green), and under SSP2-4.5 (blue) and SSP5-8.5 
scenarios (red). Lines denote the ensemble mean, and the shadings denote the 
ensemble spread (±1 s.d.). The horizontal dashed line denotes the reconstruction 
mean. h, Kernel probability density estimate of the regional streamflow during 
the reconstruction period (1000–2018) (black), the instrumental period 
(1961–2004) (green) and the future (2019–2100) under SSP2-4.5 (blue) and SSP5-
8.5 scenarios (red). Horizontal dashed line denotes the respective mean values.
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continue throughout the coming decades, potentially reaching or 
even exceeding the high levels shown by the reconstruction during the 
Medieval era. However, this increase will probably not compensate for 
the rapid socioeconomic and demographic growth in Southeast Asia, 
which means that water scarcity problems will probably continue to 
intensify. The various nations along these river basins therefore need 
strengthened cooperation to improve water preservation strategies 
and maintain their water resources. Moreover, water resource alloca-
tion is complicated by uncertainties in simulation results and by the 
self-interest of individual countries, which hinders the formulation of 
effective adaptation strategies. Addressing these uncertainties should 
remain a priority to improve future hydrological simulations that can 
inform decisions regarding water use and allocation.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author con-
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Methods
Tree ring and streamflow data
Ten tree-ring-width site chronologies were developed from increment 
cores collected during the 2007–2018 field seasons, from juniper 
(Sabina tibetica), spruce (Picea likiangensis) and fir (Abies forrestii) 
in the southern Tibetan Plateau (Fig. 1 and Supplementary Table 1), 
and were used to reconstruct the September–July streamflow of the 
Mekong, Salween and Yarlung Tsangpo rivers. Instrumental data, 
1960–2004, were obtained from stream gauge stations Chiang Saen, 
Nuxia and Daojieba (Fig. 1 and Supplementary Table 1) and were used 
to assess the covariance between the seasonal subsets of aggregated 
streamflow and tree-ring chronologies. NDVI data45 were used to assess 
the influence of streamflow on regional vegetation growth.

Streamflow reconstructions
The reconstructions were developed using a nested principal com-
ponent regression procedure68 and included 14 separate nests linked 
continuously from 1000 to 2018 ce (Supplementary Table 2). A separate 
principal component analysis was conducted on the common periods 
for the proxy predictors for which complete data within a particular 
nested period were available. Principal components with eigenvalues 
>1.5 were retained as predictors for subsequent multiple linear regres-
sion (MLR) analysis.

A similar regression procedure was followed for each nested 
model. The full period available for model calibration was 44 years 
(1961–2004). A split-sample validation (with the calibration performed 
on the last half and validation on the first) was conducted to check the 
stability of the relationships and obtain validation skill statistics using a 
50-year sliding window with a 25-year overlap (Supplementary Table 2).  
The reduction of error (RE) and R2 statistics were used to assess the 
skill of each nested model69. The final model used for reconstruction 
was then calibrated using the full instrumental 1961–2004 period. The 
predictors input to the final model were selected by forward stepwise 
regression; predictors were retained if the regression coefficient dif-
fered significantly (P < 0.05) according to a t-test.

Long-term tree-ring chronologies were substituted into the regres-
sion models to generate nested reconstructions. Because some chro-
nologies were more up to date than the available streamflow series, the 
reconstructions could extend the streamflow record not only into the 
past (year 1000), but forward to 2018, 14 years beyond the limit of the 
instrumental calibration streamflow data.

MLR
MLR has been widely used in detection and attribution studies70,71. 
Before the application of MLR in the CESM-LME simulation, we 
smoothed all independent variables using a 30-year low-pass filter 
and normalized the time series data to obtain a consistent mean and 
standard deviation with the following equation:

STR = β0 + β1PDO + β2AMV + β3STRGHG
+β4STRLULC + β5STROrb + β6STRSol + β7STRVol + β8STRAero

where STR represents the streamflow from all predictors and STRi 
represents the streamflow from individual-forcing simulations. We 
considered PDO, AMV and six additional forcings: greenhouse gases, 
land use, orbital parameters, solar activity, volcanic eruptions and 
ozone loading. The explanatory variance (EV) of the relative contribu-
tion was calculated as follows:

EVi =
||βi||R2

∑n
i=1 ||βi||

× 100%

Calculation of the PDO and AMV
Following the methods of Mantua et al.72, we define the PDO index con-
sidering the first principal component of the North Pacific SST between 

20° N and 60° N and between 110° E and 110° W49,73. The AMV index is 
defined as the SST difference between the North Atlantic (0°–65° N, 
80° W–0°) and the global ocean47.

Climate models
We obtained hydroclimate data of ten fully forced members and surface 
runoff data of six individually forced simulations from the CESM-LME, 
including greenhouse gases, land use types, orbital parameters, solar 
activity, volcanic eruptions and ozone loading. Representative Con-
centration Pathway 8.5 in the CESM Large Ensemble (CESM-LE)74 is 
used to predict streamflow changes in the CESM models, representing 
solar radiative forcing of 8.5 W m−2 in 2100. CESM-LE was begun with 
a multi-century 1850 control simulation with constant pre-industrial 
forcing. All 30 ensemble members have the same specified exter-
nal forcing, including historical forcing from 1920 to 2005 and Rep-
resentative Concentration Pathway 8.5 forcing from 2006 to 2100. 
The model version of CESM-LE is the same as CESM-LME (CESM1). 
Additionally, both simulations use the same sets of forcings during 
the overlapping period (1920–2005), except the CESM-LME also con-
sidered the impact of orbital changes75. The SSP2-4.5 and SSP5-8.5 
scenarios were applied to the surface runoff from 26 CMIP6 models, 
namely the ACCESS-CM2, ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, 
CAS-ESM2-0, CESM2-WACCM, CMCC-CM2-SR5, CMCC-ESM2, 
EC-Earth3, EC-Earth3-Veg, EC-Earth3-Veg-LR, FGOALS-f3-L, FGOALS-g3, 
GFDL-ESM4, INM-CM4-8, INM-CM5-0, IPSL-CM6A-LR, KACE-1-0-G, 
MCM-UA-1-0, MIROC6, MPI-ESM1-2-HR, MPI-ESM1-2-LR, MRI-ESM2-0, 
NorESM2-LM, NorESM2-MM and TaiESM1, to predict and evaluate 
future streamflow changes on the Tibetan Plateau. Data were integrated 
using the multi-model ensemble method to eliminate the uncertainty 
inherent in individual simulations76,77. Finally, to develop the model’s 
abilities to estimate historical and future streamflows, we standardized 
the instrumental streamflow during the common period. Considering 
the linear relationship between the data series before and after this 
treatment, we converted the modelled runoff into historical streamflow 
and then scaled the future streamflow accordingly.

Data availability
The streamflow reconstruction is downloaded from the Mendeley Data 
Repository Center (https://doi.org/10.17632/7km7vmk4f3.1). Palaeocli-
mate records for comparison in Fig. 2 were obtained from the National 
Centers for Environmental Information (https://www.ncei.noaa.gov/
access/paleo-search/?dataTypeId=18). The CESM model data can be 
downloaded at https://www.earthsystemgrid.org/dataset/ucar.cgd.
ccsm4.CESM_CAM5_LME.html, and the CMIP data can be downloaded 
at https://esgf-node.llnl.gov/search/cmip6/.

Code availability
The code to carry out the current analyses is available from the cor-
responding authors upon request.
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