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Materials and Methods 4 

Temperature timeseries. Proxy timeseries used in production of our frequency-optimised 5 

record are found in the Temperature 12k database v.1.0.0, an extensive compilation of 1319 6 

paleo-temperature timeseries from 679 sites [1]. Records are globally distributed (though their 7 

bias towards European and North American sites should be noted), span the past 12,000 years, 8 

and are composed of a variety of proxy types, making it preferable to earlier syntheses 9 

restricted to specific time horizons, proxy types, or geographical regions [1]. Records within 10 

the Temperature 12k database had to meet four key requirements for studying Holocene 11 

temperature variability: 1) they span at least 4,000 years during the Holocene, 2) they have a 12 

resolution finer than 400 years, 3) they have at least one age control every 3,000 years, and 4) 13 

they have a demonstrated relationship with temperature in the instrumental period [1]. We 14 

acknowledge issues in assuming a proxy-temperature from the instrumental period is valid 15 

throughout the Holocene, however, to date this is the most demonstrated means of 16 

palaeotemperature reconstruction. This is especially prevalent for proxies which have been 17 

found to be sensitive to more than one climatic variable (e.g., precipitation and temperature) 18 

and as such we excluded these in our production of our frequency-optimised record [1]. The 19 

Temperature 12k database is publicly available in Linked Paleo Data (LiPD) format at 20 

https://www.ncei.noaa.gov/access/paleo-search/study/27330. Proxy records from the LiPD 21 

datafile were imported to R v.4.1.0 [2] using the readLipd function in lipdR [3]. The 22 

Temperature 12k database is included within a much larger compilation of paleoclimate 23 

datasets stored under the LiPD framework. Records were selected to meet initial criteria [1] 24 

via ‘In Compilation = ‘Temp 12k’. 25 
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For most sites in the Temperature 12k database, multiple timeseries are available, reflecting 26 

different proxy types, seasonal signals, or both. Avoiding signal duplication was necessary so 27 

not to inflate the temperature signal of a given record [4], therefore a subset containing 814 28 

timeseries was used to produce our frequency-optimised record. All available proxy types were 29 

included, as proxy types differ in their preserved signals [5]. Annual mean temperature series 30 

were preferred, with those reflecting summer and winter temperature only being included in 31 

the absence of an annual mean series from the same proxy type. To select records meeting this 32 

criterion within the LiPD framework, series satisfying ‘climateInterpretation1_seasonality = 33 

annual, summerOnly and winterOnly’ were extracted. On manual inspection, seven records 34 

were identified as seasonally mislabelled and corrected accordingly. Duplicate and temporally 35 

misaligned records were also corrected. Finally, a dataset of 814, globally distributed, albeit 36 

biased towards European and North American sites was produced (Fig. S1a, b). The dataset 37 

reflects a variety of archive types for the duration of the Holocene (Fig. S1c). The LiPD 38 

framework has a hierarchical structure and stores compilations of timeseries within nested lists 39 

[6]. To navigate this database and produce further subsets of timeseries differentiated by 40 

archive type, the filter function from the package dplyr [7] was used.  41 

Many paleoclimate timeseries are associated with uneven sample spacing and 42 

chronological uncertainty, largely owing to slow accumulation rates which limit sample 43 

availability [8]. To place timeseries on a common timescale and to moderate the impacts of 44 

such uncertainty, timeseries were binned by averaging measurements within intervals 45 

corresponding to a given archive type’s mean sampling resolution in the Holocene (Table S1). 46 

We deem these to be suitable bin intervals as age uncertainty is accounted for and the 47 

frequencies of variability a given archive type is capable of preserving are considered as this 48 

approach respects Nyquist frequency [9]. Kaufman et al. (2020) [1] employed a similar 49 

appraoch in their pairwise comparison composite. Finding limited difference in the composites 50 
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produced using each of their five methodologies [10], this demonstrates appropriateness of the 51 

binning procedure employed.  52 

To alleviate spatial differences in the magnitude of absolute temperature measurements 53 

while preserving temporal variability, the binned timeseries were normalised by conversion to 54 

Z-scores (Z = (x-x̄)/σ, where x is the observed value, x̄ the timeseries mean and σ the timeseries 55 

standard deviation). This was performed in R v.4.1.0 using the scale function [2]. We 56 

appreciate as timeseries underlying our frequency-optimised record differ in length, 57 

normalising against their individual lengths could affect the presentation of the relative 58 

amplitude of temperature changes. There was, however, no common period for which all 59 

timeseries had datapoints. Statistical infilling procedures were deemed inappropriate as this 60 

would likely introduce artificial signals that would distort true climate signals we sought to 61 

identify and isolate. However, we demonstrate suitability of this normalisation by assessing 62 

the distribution of normalised temperature anomalies in each bin interval for each archive type 63 

(Fig. S2). Normalised timeseries for ice, midden, speleothem, and wood archives show little 64 

spread, while variability is greater in lacustrine, marine, and peat archives. Despite this, the 65 

distribution of anomalies remains small and any differences more likely reflect spatial 66 

differences in temperature variability [11] rather than artefacts of normalisation, demonstrating 67 

suitability of this normalisation procedure in this scenario. We encourage others to check for 68 

common overlap periods for which timeseries could be normalised against in future application 69 

of our methodology. 70 

 71 

Temperature reconstruction. Holocene temperature as recorded in ice, lacustrine, marine, 72 

midden, peat, speleothem, and wood archives, was reconstructed using a bootstrap procedure 73 

(Fig. S3). This involves performing a finite number of re-sampling experiments to obtain a 74 

theoretical sample representative of both high and low order observations, enabling robust 75 
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calculation of the statistical properties of a dataset when sufficient iterations are performed 76 

[12]. We considered it suitable for production of our archive-specific temperature histories as 77 

only those series with similar resolution were combined, thus smoothing effects are dampened. 78 

To calculate mean temperature for ice (n =28), lacustrine (n =367), marine (n =317), midden 79 

(n =10), peat (n =76), speleothem (n =13), and wood (n =3) archive subsets, a bootstrap 80 

procedure was applied to the normalised, binned timeseries. A total of 1,000 real number values 81 

were randomly drawn with replacement from series within a given archive-specific subset of 82 

proxy records for each bin interval in years between 0–12,000 years BP. Reconstructed 83 

temperature was taken as the mean of the values sampled in bin intervals (x̄ = Σx/n, where Σx 84 

is sum of the observations, and n the number of observations, in this case 1,000). The 95% 85 

confidence intervals for each archive-specific temperature history were calculated for the 86 

normalised timeseries, prior to undergoing bootstrapping (CI = x̄ ± z(σ/√n), where z is the 87 

confidence level value, in this case 1.960, and σ the sample standard deviation). No spatial 88 

gridding was applied in this procedure due to limited availability of proxy series in some, 89 

particularly Southern Hemisphere locations (Fig. S1a). We however acknowledge this invokes 90 

a spatial bias in our record and thus regard it to better reflect Northern Hemisphere 91 

temperatures, as the majority of the proxy archives derive from this locality [1]. 92 

Our frequency-optimised approach to multi-proxy reconstruction is based on nonlinear 93 

dynamical system theory, assuming the long-term behaviour of a system is ruled by sets of 94 

differential equations [13]. Signals were identified and isolated using methods demonstrated 95 

as appropriate in analysis of climate timeseries [14]. Two signal processing techniques form 96 

the basis of our frequency-optimised approach: spectral analysis and bandpass filtering. 97 

Spectral analysis provides a means of measuring the strength of periodic components in a 98 

timeseries [15]. Methods of spectral estimation traditionally derive from the principles of 99 

Fourier transform functions, whereby differential equations are used to decompose a timeseries 100 
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into its frequency domain by characterising periodicities as sine and cosine functions [16]. The 101 

multi-taper method (MTM) of spectral analysis follows such principles [17], but additionally 102 

employs a tapered windowing approach to reduce endpoint discontinuities that contaminate 103 

spectral estimates with substantial low-frequency variability and alleviate variance-resolution 104 

trade-offs, thereby enabling identification of low-amplitude oscillations in relatively short 105 

series [18]. The ability to quantify the statistical significance of spectral density estimates is a 106 

further advantage of the MTM methodology [18]. The MTM analysis was performed in R 107 

v.4.1.0 using the spec.mtm function in the package multi-taper v1.0-15 [19]. Spectral estimates 108 

are computed using a discrete prolate spheroidal sequences tapered window, centred using 109 

spheroidal sequences, the most nearly band-limited functions [20]. Bandpass filtering isolates 110 

the periodic components in a timeseries. A digital filter is used to pass, or preserve, frequencies 111 

within a specified spectral range, and attenuate frequencies outside the range, enabling isolation 112 

of the periodic components underlying a timeseries [21]. Filter windows are generally 113 

symmetrical around the mid-point of the filter width, but the degree of edge tapering varies. 114 

We use a Tukey window to produce a clean bandpass with minimal spectral leakage, achievable 115 

due to the presence of ripple control factors [22]. In R v.4.1.0, bandpass filtering was carried 116 

out using the bandpass function in the package astrochron v1.0 [23], where we specified 25% 117 

of the data series to be subject to tapering. 118 

 119 

Signal isolation. To identify the archive types most suitable in preserving climate variability 120 

at interannual (<10 years), multi-decadal (10–150 years), multi-centennial (150–1000 years), 121 

multi-millennial (1000–6000 years) and ultra-long (>6000 years) timescales, MTM spectral 122 

analysis was applied to archive-specific temperature histories. The number of periodicities 123 

identified as significant at the 95% confidence interval within interannual, multi-decadal, 124 

multi-centennial, multi-millennial, and ultra-long timescales (Fig. S4) were used to deduce 125 
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which timescale of variability a given archive type best reflects. As stochastic noise represents 126 

a relatively small proportion of paleoclimate timeseries [5], cyclicities which respect Nyquist 127 

frequency [9] are assumed to reflect true climate signals. Additionally, our binning procedure 128 

is expected to have minimised noise in our archive-specific temperature histories, deeming 129 

signals to be true climate variations. This led to wood being identified as the most appropriate 130 

archive type at an interannual scale, speleothem archives at multi-decadal scales, ice and 131 

midden archives at multi-centennial scales, peat and marine archives multi-millennial scales, 132 

and lacustrine archives at ultra-long timescales. 133 

Bandpass filtering was employed to isolate the multi-decadal variability preserved in the 134 

speleothem temperature history, the multi-centennial variability in the ice and midden 135 

temperature histories, the multi-millennial variability in the peat and marine temperature 136 

histories, and the ultra-long variability in the lacustrine temperature history.  137 

Dendro-derived temperature reconstructions are often assumed to reflect an interannual 138 

signal due to band-width limits to dendrochronological records [24,25]. However, it is not 139 

unreasonable to assume there may be some low frequency signal in our wood temperature 140 

history due to the exceptionally long-length of the three dendro (i.e., tree-ring width) 141 

chronologies from which the wood temperature history is derived. We counter this effect by 142 

assuming any such low frequency trends to be linear, hence apply linear detrending in R v.4.1.0 143 

using the detrend function in astrochron v1.0 [23]. It is assumed the signal remaining after 144 

linear detrending reflects an interannual signal. The wood temperature history is temporally 145 

limited to 7,450 years BP and as such, a synthetic series was generated to extend the coverage 146 

of the interannual signal from 7,451–12,000 years BP. This synthetic series resembles the 147 

variability of wood observations in the pre-industrial Common Era (0–1850 CE). The pre-148 

industrial Common Era is a suitable training period as sample availability is highest, dating 149 

precise [26], and the divergence problem avoided [27]. Again, we applied linear detrending to 150 
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remove any possible low frequency artefacts. An Autoregressive Integrated Moving Average 151 

(i.e., ARIMA) model was then fit to this detrended series to enable back casting and replication 152 

[28,29]. In R v.4.1.0, an ARIMA model was fit using the auto.arima function from forecast 153 

v8.15 [30], which employs the Hyndman-Khandakar algorithm to ensure a good fit between 154 

the model and observations [30]. The simulate function [2] was used to backcast the interannual 155 

fluctuations characteristic of the wood reconstruction beyond 7,450 years BP, however, only 156 

one iteration was produced as averaging many iterations would attenuate the randomly 157 

modelled interannual signal [31]. We acknowledge caveats of this approach, namely the 158 

assumption that the magnitude of high-frequency anomalies of the pre-industrial Common Era 159 

prevailed in the early Holocene. The early Holocene was characterised by starkly different ice 160 

sheet and vegetation extent, sea level, and insolation, inferring Earth’s boundary conditions 161 

differed to the pre-industrial Common Era. It is uncertain whether associated effects of an 162 

increased meridional temperature gradients increased the magnitude of high-frequency climate 163 

fluctuations [32]. However, we use Earth system model simulations to demonstrate our 164 

approach appropriately represents interannual extremes in the early Holocene in the absence 165 

of dendro-derived temperature reconstructions for this period. Variance and standard deviation 166 

of the 10-year bandpass of mean annual Northern Hemisphere landmass temperature simulated 167 

by the CCSM3-TraCE-21k Earth system model simulation [33] does not significantly differ in 168 

the period that the synthetic portion of our frequency-optimised series covers (7,451–12,000 169 

years BP) from that of the pre-industrial Common Era (0–1850 CE) (p =0.47 in f- and t-test). 170 

We used model simulations for Northern Hemisphere landmasses as our wood temperature 171 

history is biased towards this locality. On this basis, we argue the pre-industrial Common Era 172 

is a suitable training period from which to derive our synthetic portion of our interannual series 173 

due to similarity in the magnitude of high-frequency extremes in these periods. This is 174 

additionally supported by forcing reconstructions which show prevalence of volcanic eruptions 175 
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during the early Holocene [34], which were also characteristic of the pre-industrial Common 176 

Era [35].  177 

 178 

Frequency-optimised record. The sum of isolated signals reflecting interannual, multi-179 

decadal, multi-centennial, multi-millennial, and ultra-long timescales (Fig. 2) was then 180 

calculated to generate our frequency-optimised record of Holocene temperature (Fig. 1). In 181 

case of multi-centennial and multi-millennial scales where multiple archive types best reflect 182 

these timescales of variability, the contribution of each band-passed signal was weighted by 183 

the number of archives used.  184 

We acknowledge spatial biases in the timeseries underlying our frequency-optimised 185 

record, particularly at induvial archive scales (Fig. S1). However, due to environmental 186 

constraints on where proxy archives can accumulate, it is unfeasible to expect each archive 187 

type to be globally distributed. 455 of the 814 of the proxy records that underlie our record are 188 

located between 40° and 70°N in a circumpolar belt across Eurasia and North America and 189 

most of the biogeochemical archives are active in, or sensitive to warm season conditions [1]. 190 

We therefore deem our frequency-optimised record to better reflect Northern Hemisphere 191 

warm season temperatures. This is supported by the long-term trend of frequency-optimised 192 

record resembling that of simulated Northern Hemisphere summer temperatures (Fig. S7). If 193 

our approach is to be applied on a truly global scale, we encourage further acquisition of low- 194 

and high-resolution proxy-climate reconstructions from a wide geographical area and 195 

application of a spatial binning procedure to moderate the effects of uneven record distribution 196 

that will likely prevail.  197 

Confidence intervals are deliberately permissive to account for non-climate variability 198 

preserved in proxy archives [5] and year-to-year uncertainty associated with annually resolved 199 

climate records. Confidence intervals were calculated by summing the 95% confidence 200 
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intervals of the archive-temperature histories from which our record is derived (Fig. S3). In 201 

absence of an ability to produce of confidence intervals beyond 7,450 years BP for the wood 202 

series, two standard deviations from the mean of the synthetic interannual variability were used 203 

in its place. 204 

 205 

Proxy-model comparison. We compared our frequency-optimised record to three transient 206 

Earth system model simulations. Comparisons were made in the frequency domain, computing 207 

the Morlet wavelets [36], in MATLAB R2021a using the wt command (Fig. 4), and MTM power 208 

spectra in R v.4.1.0 [19]. We carried out this analysis on our frequency-optimised record, 209 

existing multi-proxy reconstructions [10,37-39] and Northern Hemisphere summer (Figs. 4, 210 

S5), global annual (Figs. S5, S6), and Northern Hemisphere annual (Figs. S5, S7) model 211 

simulations [33,40-43]. MPI-ESM1.2 is a transient Earth system model simulation for the 212 

period 100–7,950 years BP [40,41]. In the model run considered here, the slo0050 run, 213 

atmosphere, ocean and dynamic vegetation components are forced by prescribed variations in 214 

orbitally induced insolation, greenhouse gas concentrations, land-use change, volcanic aerosol 215 

distribution, solar irradiance, and stratospheric ozone distribution [40,44]. IPSL-TR6AV-Sr02 216 

is a transient Earth system model simulation for the period 0–6,000 years BP [42,43]. This 217 

modified version of the IPSL-CM5A model [45] couples atmospheric, oceanic, sea-ice, ocean 218 

biogeochemical and dynamic global vegetation models to simulate the full range of global 219 

climate system dynamics. Vegetation and phenology components are interactive, while aerosol 220 

and solar radiation are accounted for by prescribing the optical distribution of dust, sea salt, 221 

sulphate, and particulate organic matter. CCSM3-TraCE-21k is a transient Earth system model 222 

simulation starting from the Last Glacial Maximum around 21,000 BP years BP and ending in 223 

1990 CE [33]. Completed using the NCAR CCSM3 [46], this coupled atmosphere-ocean 224 

general circulation model includes a dynamic global vegetation model component, and is 225 
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forced by orbital, greenhouse gases, ice sheet and meltwater forcing mechanisms; herein used 226 

over the period 12,000–0 years BP.  227 

 228 

Figures (S1-S7) 229 

 230 

Fig. S1. Record distribution. Spatiotemporal distribution of the records in subset of the 231 

Temperature 12k database [1] used in this study (n =814). In (a), coloured circles show the 232 

geographical distribution of sites and archive type of each record. (b) Latitudinal distribution 233 

of sites, differentiated by archive type. (c) Number of records available for each archive type 234 

in time. In each panel, ice records are light blue, lacustrine green, marine dark blue, midden 235 

yellow, peat orange, speleothem red, and wood pink. 236 

 237 
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 238 

Fig. S2. Distribution of temperature anomalies. Boxplots showing the distribution of the 239 

normalised temperature anomalies in each bin interval for ice (light blue), lacustrine (green), 240 

marine (dark blue), midden (yellow), peat (orange), speleothem (red), and wood (pink) 241 

archives. Box shows the median, 25th and 75th quartiles. Whiskers show minimum and 242 

maximum values. Grey crosses show outliers.  243 
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 244 

Fig. S3. Archive-specific temperature histories. Temperature histories for ice, lacustrine, 245 

marine, midden, peat, speleothem, and wood archives produced using the subset of records in 246 

the Temperature12k database [1] designated for use in this study. Temperature is reconstructed 247 

using a bootstrap procedure, using 1,000 iterations with replacement. Shading indicates 95% 248 

confidence intervals. Values are plotted as anomalies relative to the Holocene mean 249 

temperature. 250 
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 251 

Fig. S4. Significant periodicities. Number of periods identified by MTM spectral analysis as 252 

significant at the 95% confidence interval at interannual (<10 years), multi-decadal (10–150 253 

years), multi-centennial (150–1,000 years), multi-millennial (1,000–6,000 years) and ultra-254 

long (>6,000 years) timescales for ice (light blue), lacustrine (green), marine (dark blue), 255 

midden (yellow), peat (orange), speleothem (red), and wood (pink) archives. 256 
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 258 

Fig. S5. Power spectra. Log power distribution of frequency components identified in: 259 

Marcott et al. (2013) GMST reconstruction [37], Kaufman et al. (2020) multi-method ensemble 260 

[10], Bova et al. (2021) seasonally unadjusted series [38], Osman et al. (2021) proxy-based 261 

series [39], our frequency-optimised record (This Study), and global annual mean surface 262 

temperature simulated using MPI-ESM1.2 [40,41], IPSL-TR6AV-Sr02 [42,43], and CCSM3-263 

TraCE-21ka [33] transient Earth system models. Power spectra are computed using MTM 264 

spectral analysis for the period each record covers between 0–12,000 years BP. 265 

 266 

This Study
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 267 

Fig. S6. Global annual temperature. Upper row shows wavelet power spectra of our 268 

frequency-optimised record and global annual mean temperature changes simulated using 269 

MPI-ESM1.2 [40,41], IPSL-TR6AV-Sr02 [42,43], and CCSM3-TraCE-21ka [33] transient 270 

Earth system models. Spectral signatures were calculated over the individual record lengths. 271 

Contours enclose periodicities significant at the 95% confidence interval, and shadings 272 

represent the cone of influence. Units reflect log spectral power. Bottom row shows the 273 

evolution of global annual mean temperature simulated using MPI-ESM1.2 [40,41], IPSL-274 

TR6AV-Sr02 [42,43], and CCSM3-TraCE-21ka [33] transient Earth system models. Records 275 

are plotted relative to their Holocene mean (12,000–0 years BP).276 
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 277 

Fig. S7. Northern Hemisphere annual temperature. Upper row shows wavelet power 278 

spectra of our frequency-optimised record and Northern Hemisphere annual mean temperature 279 

changes simulated using MPI-ESM1.2 [40,41], IPSL-TR6AV-Sr02 [42,43], and CCSM3-280 

TraCE-21ka [33] transient Earth system models. Spectral signatures were calculated over the 281 

individual record lengths. Contours enclose periodicities significant at the 95% confidence 282 

interval, and shadings represent the cone of influence. Units reflect log spectral power. Bottom 283 

row shows the evolution of Northern Hemisphere annual mean temperature simulated by using 284 

MPI-ESM1.2 [40,41], IPSL-TR6AV-Sr02 [42,43], and CCSM3-TraCE-21ka [33] transient 285 

Earth system models. Records are plotted relative to their Holocene mean (12,000–0 years BP).  286 

 287 

 288 

Tables (S1) 289 

Table S1. Proxy-temperature records. Types and characteristics of proxy archives in the 290 

subset of Temperature 12k database [1] records used in construction of our frequency-291 

optimised temperature record (n =814). 292 
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Archive 
Type 

Number 
of 
records 

Mean 
resolution 
(years) 

Median 
resolution 
(years) 

Standard 
deviation of 
resolution 
(years) 

Minimum 
sample 
age (year 
BP) 

Maximum 
sample 
age (year 
BP) 

Proxies 

Ice 28 42 20 49 0 12000 

• Borehole 
depth 

• Bubble 
frequency 

• δ18O 
• δD 

• Gas 
• Hybrid 
• Isotope 

diffusion 
• Melt layer 

Lake 367 168 158 98 0 12000 

• Alkenone 
• BSi 
• Chironomid 
• Chlorophyll 
• δ18O 
• Diatom 
• GDGT 

• Hybrid 
• Mg/Ca 
• Particle 

size 
• Pollen 
• TOC 

Marine 317 175 134 140 0 12000 

• Alkenone 
• δ18O 
• Diatom 
• Dinocyst 
• Foraminifera 
• GDGT 

• Long 
chain diol 

• Mg/Ca 
• Pollen 
• Radiolaria 

Midden 10 162 139 99 0 12000 • Macrofossil 
• Pollen 

 

Peat 76 160 145 94 0 12000 

• C15 fatty 
alcohols 

• Chironomid 
• δ13C 

• δ18O 
• GDGT 
• Pollen 

Speleothem 13 27 25 28 0 12000 
• 3-OH fatty 

acids 
• δ13C 

• δ18O 
• δD 

Wood 3 1 1 0 0 7450 • Tree-ring 
width 

 

293 
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