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1933). All plane stems are characterized by episodic 
bark exfoliation, however, which has been described 
to be more pronounced during periods of drought- 
induced stem shrinkage (Kozlowski and Pallardy 1997; 
Milks et al. 2017). If summer drought did not occur 
for several years, trees may build up a thick outer 
bark, and distinct water shortage over several weeks 
and months, such as during the summer of 2018 in 
Mainz (Figure 1), causes widespread exfoliation 
across urban sites (Schmidt 2018; Stadt Mainz 2022).

The underlying reason for such an event is of 
physical nature as the inflexible lignin-rich outer bark 
loses connection with the flexible inner bark (phloem) 
that shrinks in line with the water-conducting stem 
sapwood. Drought induced stem shrinkage can 
become particularly pronounced during warm grow-
ing season months, when high atmospheric demand 
and transpiration rates at the leaf level meet water 
shortage at the root level so that tree stems contract 
and slim by several centimeter circumference (Zweifel 

INTRODUCTION
London plane (Platanus × acerifolia) is one of the 
leading tree species in European cities capable to 
grow across a range of climate zones (Henry and 
Flood 1919; Browicz 1964; Mimet et al. 2009). It has 
been described to be resilient to urban pollutants, 
infestations, and severe drought (Dineva 2004; Iva-
nová et al. 2007; Pourkhabbaz et al. 2010; Gillner et 
al. 2015; Yang et al. 2015; Adamska 2019), and miti-
gates heat stress through transpiration-induced cool-
ing, which is particularly effective during periods of 
high atmospheric evaporative demand (Bowden and 
Bauerle 2008; Ennos 2012; Lindén et al. 2015; Sanusi 
and Livesley 2020). Transpiration-induced cooling 
even remains operational during nighttime when sta-
ble nocturnal boundary layers typically limit air mix-
ing (Lindén et al. 2016).

Platanus × acerifolia is the result of manifold hybrid-
ization and bark phenotypes vary largely in response 
to changing provenances and seed propagation (Sax 

Abstract. Background: Bark exfoliation is a common feature of London planes (Platanus × acerifolia) that reportedly increases during periods 
of drought-induced stem shrinkage. Here, we explore the spatial patterns and potential drivers of plane bark exfoliation in Mainz, a central 
European city of 220,000 inhabitants, following the exceptional summer drought of 2018. Methods: We estimate the degree of bark exfoliation 
of 349 urban plane trees across the city and use stem microcores to analyze their tree-ring widths from 2006 to 2019. Further to impervious 
cover, settlement structure and vegetation cover in the vicinity of each tree, we investigate the relationships between bark exfoliation and 
tree, site, and climate factors. Results: Results indicate that plane bark exfoliation correlates significantly with tree size and inner bark width 
(both p < 0.001) but is independent of impervious cover and local site conditions. Similarly, stem growth does not change within the city under-
lining the resilience of London planes to cope with highly diverse urban site conditions. Plane tree-ring widths were only weakly associated 
with exfoliation estimates (p < 0.05) but strongly controlled by cold season temperatures (p < 0.001). Conclusion: As tree growth was also not 
affected by summer drought, potential detrimental effects by limited infiltration, increased runoff and altered evaporation are of less concern 
for the plane trees in Mainz. Projected winter warming is likely to enhance urban plane growth in upcoming decades.
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sampled trees, and the same categories are employed 
to analyze the climatic drivers of urban plane growth 
using TRW data since 2006.

Using this setup, we address the following 
hypothesis: 

1. The 2018 drought caused varying spatial patterns 
of plane bark exfoliation in Mainz and these 
patterns can be related to changing microsite 
conditions as indicated by impervious cover, 
building heights, and vegetation cover.

2. Additional factors such as tree size, growth rate, 
and phloem width influence bark exfoliation and 
override the potential association between exfo-
liation and tree microsite conditions.

3. Plane ring width data can be used to assess the 
importance of the 2018 drought and other climatic 
drivers of plane growth in an urban environment. 

By addressing these hypotheses, we provide the 
first systematic assessment of bark exfoliation pat-
terns and climate drivers of plane growth across a 
mid-sized city in central Europe.

and Häsler 2001; Deslauriers et al. 2007; Oberhuber 
and Gruber 2010). In 2018, these conditions were 
met in Mainz when exceptionally warm conditions 
accompanied the driest summer recorded over the 
past 30 years (Figure 1B), a covariance pattern char-
acteristic for central European climates (Büntgen et 
al. 2010; Ljungqvist et al. 2019).

Whereas the basic mechanisms between stem 
shrinkage and exfoliation are well understood (Kozlo-
wski and Pallardy 1997), little is known about the 
environmental conditions affecting bark peeling and 
potentially varying spatial patterns across the diverse 
sites within a city. We here address these issues by 
comparing exfoliation rates of several hundred 
planes, recorded after the summer drought of 2018 in 
Mainz, with impervious cover, circumference, tree-
ring width (TRW), and phloem width (PHW) data to 
establish a basic understanding of the variability of 
this characteristic feature across urban structures. 
This comparison is conducted considering a ranking 
of sites into different categories integrating the envi-
ronmental conditions in the nearby surroundings of 

Figure 1. 2018 summer drought in Mainz within the context of the past 30 years. (A) Annual (black) and summer (grey) temperatures, 
and (B) summer precipitation totals recorded since 1992 at the Mainz-Lerchenberg meteo station. Top map shows the location of 
Mainz in Germany.
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Tree-ring and Phloem Width 
Microcores (1.8 mm diameter) 15- to 30-mm long 
were sampled at stem breast height to measure TRW 
and (if contained on the sample) PHW at a precision 
of 0.01 mm using a LinTab device (RinnTech, Hei-
delberg, Germany). Contrary to classical dendrochro-
nological core samples that typically extend towards 
the stem pith, and thereby include all rings at breast 
height, microcore samples only contain the few out-
ermost rings of a trunk. Microcore samples therefore 
include fewer rings if the growth rate of a particular 
tree was high, and vice versa, more rings if the recent 
growth rate was low. The number of rings thus varies 
considerably among the 349 plane samples ranging 
from 2 to 41 with a mean around 9. The TRW series 
were detrended by calculating residuals from linear 
fits, and chronologies were produced using the arith-
metic mean of all 349 planes (ALL) as well as the site 
rank sub-samples. All plane trees in Mainz were 
likely irrigated in the first few years after planting, but 
this period of juvenile growth is not covered by the 
short microcores that only include the most recent 
tree-rings.

Data Analysis
The relationship between remaining bark, impervious 
cover, site ranks, circumference, TRW and PHW 
were evaluated using box plots and Spearman cor-
relations. Linear regression was used to add detail to 

MATERIALS AND METHODS
Meta Information and Ranking
Three hundred forty-nine London planes were ran-
domly selected throughout the city of Mainz and the 
percentage of remaining bark estimated based on 
standardized photographs (Figure 2). Stem circum-
ference measured at breast height ranged from 91 to 
340 cm and included a modest tendency towards smaller 
specimens from the city center near the Rhine to the 
outskirts (Figure S1). Photographs were used to doc-
ument the degree of impervious cover within and 
beyond a radius of 20 m of each tree (Figure S2). 
These data were combined in Table 1 with estimates 
of surrounding building heights and vegetation cover 
to rank all plane sites into 4 categories here character-
ized as city avenues (site rank [SR] 1), residential and 
parking lots (SR2), urban plazas and grass strips 
(SR3), and parks and playgrounds (SR4). Site ranks 1 
to 4 correlate at r = −0.78 with the impervious cover 
estimates. However, contrary to the impervious cover 
data that only contain a minor drift towards more 
paved sites in downtown Mainz, site ranks 1 to 4 show 
distinct spatial clusters including city avenues (SR1) 
being concentrated in the city center and parks and 
playgrounds (SR4) mostly occurring in the outskirts 
(Figures S1B and S1C). The numbers of trees and 
mean circumferences are relatively even among the 
site ranks, ranging from 81 to 94 cm and 164 to 197 
cm, respectively (Table 1).

Figure 2. Plane stem exfoliation estimates ranging from 0% to 100% remaining bark.



©2023 International Society of Arboriculture

4 Esper et al: London Plane Bark Exfoliation and Growth

the association between TRW and PHW, as such a 
comparison appeared fairly fundamental and wide-
spread PHW data has not been conducted yet. The 
TRW data were analyzed to evaluate varying covari-
ances among the site rank sub-samples and the result-
ing chronologies compared to highlight differences 
between the microsites. The SR1 to SR4 TRW 
chronologies, as well as the chronology integrating 
all plane TRW data (ALL), were calibrated from 2006 
to 2019 against meteorological data recorded at 
Mainz Lerchenberg (German Weather Service 2021a, 
2021b) using Spearman correlations to discover the 
climatic drivers of plane growth across the city.

RESULTS AND DISCUSSION
Micro-Site Effects on Plane Bark 
Exfoliation
We found no correlation between bark exfoliation 
and impervious cover estimates at 349 plane sites in 
Mainz (r = −0.03). This result did not meet expecta-
tions as the site conditions changed dramatically 
within the city fundamentally affecting infiltration, 
runoff, and evaporation. The substantially altered pav-
ing of sites, however, did not modify plant water 
access, conduction, and losses to stimulate spatially 
varying stem shrinkage and bark exfoliation rates. 
Since these conditions were not met during the excep-
tionally warm and dry summer of 2018, it appears 
likely that no other period of high atmospheric 
demand caused spatially varying bark exfoliation 
associated with urban soil sealing patterns.

When considering the surrounding vegetation and 
building heights in addition to the impervious cover, 
a weak association between site rank and exfoliation 
is observed (Figure 3). The median estimates of 
remaining bark increase from SR1 (20%) to SR3 
(60%) indicate that fissuring and flaking off is accel-
erated along city avenues (SR1) compared to residen-
tial and parking lots (SR2), and to urban plazas and 
grass strips (SR3)(Table 1). However, this tendency 
is not continued into the least urban rank (SR4: parks 
and playgrounds) where the remaining bark drops to 
only 40%. This reversal also affects the Spearman 
rank correlation (r = 0.14), which appears addition-
ally biased by ill-defined site ranks (particularly for 
residential and parking lots [SR2] and urban plazas 

Table 1. Site rank characteristics and metrics. TRW is the mean tree-ring width of the years 2016 to 2019. Rbar is the inter-series 
correlation among detrended TRW series including ≥ 3 years.

Site Description
Impervious cover Building height Vegetation cover

No. of 
trees Circumference TRW Rbar

< 20 m > 20 m < 20 m > 20 m < 20 m > 20 m

SR1 City
avenues High High High High None None 87 178 cm 0.23 cm 0.12

SR2
Residential 
and parking 

lots
Medium Low Medium Low Low Medium 87 170 cm 0.25 cm 0.22

SR3 Urban plazas 
and grass strips Low Medium Low Medium Medium Low 94 197 cm 0.21 cm 0.15

SR4 Parks and 
playgrounds None None None None High High 81 164 cm 0.27 cm 0.39
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Figure 3. Association between remaining bark (in %) and site 
rank. With SR1 = city avenues, SR2 = residential and parking 
lots, SR3 = urban plazas and grass strips, and SR4 = parks 
and playgrounds.
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and grass strips [SR3]). Accompanying variables that 
could potentially bias this calculation, such as cir-
cumference changes from SR1 to SR4, appear to be 
orthogonal and do not affect these estimates. Given 
these varying results for the different site ranks and 
the insignificant result when comparing with percent 
impervious cover, hypothesis (1) on the importance 
of changing micro-site conditions on post-drought 
plane bark exfoliation is essentially disproven.

Other Drivers of Plane Bark Exfoliation
Further tests using tree size and growth rate data reveal 
a weak relationship between remaining bark and 
TRW (r = 0.11, p < 0.05) and stronger relationships 
with circumference (r = 0.33, p < 0.001) and PHW 
(r = 0.58, p < 0.001). The closer association with cir-
cumference, and even more so with PHW, are also 
reflected by the increasing box plots and medians of 
remaining bark categories from 0% to 100% (Figure 
4). Whereas the relationship between bark exfoliation 

and tree size has been detailed before (Kozlowski and 
Pallardy 1997), the link with PHW is a new finding 
suggesting that the shrinking of the sugar-conducting 
inner bark during severe drought conditions affects 
bark exfoliation and that a wider PHW is amplifying 
this process.

The limited correlation between exfoliation rates 
and TRW appeared surprising as we expected TRW 
to be closely coupled with PHW (which again cor-
relates well with bark peeling). This is not the case, 
however, as a linear fit explains < 25% of TRW/PHW 
covariance (Figure S3). The scatter of the XY-plot 
demonstrates that particularly the data points > 5 mm 
TRW and > 9 mm PHW deviate substantially from 
the linear regression indicating a decoupling between 
these variables in fast-growing planes, which in turn 
constrained the link between TRW and drought- 
accelerated exfoliation rates. This conclusion is, how-
ever, restricted by the limited number of outermost 
tree rings used in this calculation (mean = 9 years), 
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Figure 4. Association between remaining bark and (A) tree-ring width, (B) circumference, and (C) phloem width of 349 London planes 
within Mainz.
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to changing impervious cover and site conditions 
(Table 1), as would be expected from experiments 
considering varying pavements (Morgenroth 2011; 
Morgenroth and Visser 2011) and soil compaction 
(Smith et al. 2001). This finding underlines the resil-
ience of London planes to cope with varying urban 
site conditions, which is potentially larger than in 
other tree species.

The single TRW series reveals a distinct order 
from slow-growing trees containing many rings to 
fast-growing trees containing few rings (Figure 5a). 
This sampling bias is expressed in a sharp TRW 
decline from 3 mm in the first year to 0.7 mm 20 
years after aligning the data by the first year on each 
core sample (red curve in Figure 5b), though the latter 
value represents the mean of much fewer trees (n = 14). 
A smaller but still obvious trend remains after remov-
ing the mean growth rates from the timeseries, indi-
cating that the outmost rings of the Mainz planes 
contain a decadal scale declining trend that is likely 
related the ever-increasing stem girth (i.e., a classic 
dendrochronological age trend)(Esper et al. 2003). 
This trend is here estimated to equal −0.23 mm per 

Esper et al: London Plane Bark Exfoliation and Growth

which might not well represent the overall growth 
rates of many of the large and much older trees sam-
pled within the urban areas of Mainz (Figure S1A). 
The average length of the microcore samples used in 
this study (17.4 mm) represents < 10% of the esti-
mated stem radii at breast height. 

The gradually increasing correlation from TRW-
to-circumference-to-PHW with percent remaining 
bark partly supports hypothesis (2) on the importance 
of other factors (beyond microsite effects) controlling 
plane bark exfoliation. This conclusion also under-
lines the limited practical control of bark exfoliation 
as these variables are largely beyond the influence of 
urban foresters.

Plane Ring Width Characteristics 
in Different Micro-Sites
Mainz planes grew relatively fast at a rate of 2.5 mm 
per year considering the average width of the outer-
most rings derived from 15- to 30-mm long micro-
cores. While this rate changes dramatically among 
single trees, ranging from < 0.6 mm to > 6 mm per 
year, we did not find any systematic difference related 

1980 1990 2000 2010 2020

2

4

6

Year CE

2

4

6

8

1

0

1

2

3

10 3020
0

1980 1990 2000 2010 2020
−1

0

1

2

Year CE

−1
1 10 3020

0

TR
W

 (m
m

)

Year Year

A B C

D

TR
W

 (m
m

)

Figure 5. Plane tree ring data. (A) Bar plot showing the period and mean tree-ring width (TRW) of all 349 plane trees. Each bar represents 
one tree. (B) TRW series aligned by first year and their mean (red curve). (C) TRW anomaly series derived from calculating residuals 
between the original measurements and the means shown in A, aligned by first year. (D) The Mainz plane chronology (red curve) from 
detrended TRW anomaly series (grey).
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illustrated here shows substantially wider rings from 
1999 to 2003, but this period appears less reliable as 
only few series extend back that far and the spread 
among series is substantially increased. After 2 years 
of faster growth in 2007 and 2008, plane TRW was 
particularly small in 2009 and 2013, followed by a 
period of wider rings and chronology maxima in 2016 
and 2018.

This pattern of narrow and wide rings since 2006 
is not coherent among the site rank chronologies 
which suggests that the varying site conditions within 
Mainz altered the covariance structure among urban 
London planes (Figure 6). Whereas SR1 (city ave-
nues) shows wide rings in 2007 and 2008, followed 
by a decline until 2013, the post-2013 data are effec-
tively free of interannual variability. These patterns 
change somewhat gradually from SR1 to SR4 (i.e., 
the early decline diminishes), and the post-2013 data 
show more interannual variability. The latter is partic-
ularly striking in parks and playgrounds (SR4) that 
show a clear up-and-down from year-to-year since 
2013 indicating that growth of planes in these sites 
might be controlled by deviating forcings.

Reductions and increases of interannual variability 
are at least partly driven be varying inter-series cor-
relations among the single trees (Rbar in Table 1). A 
detailed analysis of the varying Rbar scores shows 
that particularly the SR4 park and playground trees 
deviate from the other SRs in which covariance is 

decade over the most recent tree rings (red curve in 
Figure 5c). The age trend complicates comparisons 
between tree size and growth rate as larger (and older) 
trees tend to produce smaller outermost rings, and 
thereby constrains the correlation between TRW and 
circumference to only r = 0.15 for all 349 plane trees 
included in this study.

Removal of the age trend by calculating residuals 
from linear fits produces a dataset of coherent growth 
variability without any long-term trend since the 
early 2000s. The detrended mean chronology (red 
curve in Figure 5d) appears reliable after 2005 CE 
when > 50 trees are available and the single TRW 
series indicate some common interannual variability 
(Rbar = 0.17). However, this value is still much smaller 
than Rbar scores from tree-line environments that 
typically exceed 0.5 (Esper et al. 2010; Hellmann et al. 
2016; Büntgen et al. 2017) forming the basis for long 
climate reconstructions beyond the instrumental period 
(Esper et al. 2016; Tejedor et al. 2016; Esper et al. 
2018; Ljungqvist et al. 2020). The mean chronology 
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mechanisms controlling this correlation remain unclear 
as plant growth is dormant during much of the cold 
season from previous-year October to current-year 
April in Mainz (Linden et al. 2016). Previous-year 
temperature signals in plane TRW data have already 
been reported (Cedro and Nowak 2006) and seem to 
be related to the storage of carbohydrates throughout 
winter and remobilization during spring and summer 
to support earlywood development (Sala et al. 2012; 
Gessler et al. 2014; Jacquet et al. 2014). It is import-
ant to emphasize, however, that the calibration results 
shown in Figure 8 are based on rather short TRW 
chronologies extending over only 14 years from 2006 
to 2019 and are therefore much less reliable than 
scores typically reported in the dendroclimatic litera-
ture based on calibration/verification periods over 
100 years and more (Esper et al. 2005; Esper et al. 
2008; Konter et al. 2016; Römer et al. 2021).

Compared to the temperature and associated frost 
and ice day signals, which exceed p < 0.001, the cor-
relations with monthly and seasonal precipitation data 
remain insignificant. This comparison demonstrates 

systematically lower—except for one tree in SR4 that 
anticorrelates with all others at r = −0.65 (left data 
point in black curve in Figure 7). While the varying 
Rbar values and SR chronologies point to distinct dif-
ferences between urban sites, it appears important to 
recall that the intersite correlation among the site rank 
chronologies is substantial (r2006-2019 = 0.75), which 
indicates that the factors synchronizing growth vari-
ability across the urban structures of Mainz are sur-
passing the locally varying site conditions. The high 
intersite covariance thereby limits expectations about 
potentially varying climatic forcings among the plane 
site categories in Mainz.

Climate Drivers of Plane Tree-Ring 
Growth
The ALL chronology integrating 349 detrended plane 
TRW series correlates significantly with cold season 
temperatures and covarying frost and ice days recorded 
at Mainz-Lerchenberg (Figure 8). The signal is strongest 
during (current-year) January and shows a secondary 
peak again in May, yet the underlying physiological 
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samples to support assessments of growth variability 
and climate signals over the past 50 to 100 years, 
instead of only the past 1 to 2 decades covered by ≤ 3 cm 
microcores. Additional information about locally vary-
ing groundwater access and root barriers would be 
beneficial, though we acknowledge that such data are 
difficult to generate in urban environments. It appears 
instructive to replicate this study in another, perhaps 
Mediterranean, climate zone, and to differentiate 
between Platanus orientalis, Platanus occidentalis, 
and their hybrid, Platanus × acerifolia, using genetic 
analyses. Projects considering these approaches will 
demonstrate whether the conclusion established here 
on the dominance of climate forcing over site differ-
ences on plane growth and bark exfoliation will 
remain.
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accessible and spatially resolved water table and root 
barrier data unavailable (Gilman 2006).

While the climate-growth comparisons support 
hypothesis 3 on the suitability of tree-ring data to 
assess potential drought and temperature signals, the 
expected forcing differences between SR1 through 
SR3 and SR4 (parks and playgrounds), based on 
varying chronology and Rbar results (Figures 6 and 
7), are not validated by the calibration statistics that 
appear highly uniform among the sites (Figure 8b). 
This finding, together with the spatially invariable 
exfoliation data, led us to conclude that a common 
climate forcing synchronizes growth variability across 
the urban structures of Mainz, and that the highly 
variable site characteristics within the city have no 
detectable impact on both plane growth and bark 
exfoliation.

CONCLUSIONS
An unprecedented network of monitoring and TRW 
data from 349 plane trees has been established to 
evaluate spatial patterns of drought-induced bark 
exfoliation across the urban structures of a central 
European city. Unlike highly variable site conditions 
including changes in impervious cover, vegetation 
cover, and building heights, no systematic differences 
in plane bark exfoliation are detected. This conclu-
sion is in line with supplementary TRW analyses 
revealing largely coherent growth variations among 
urban plane sites forced by cold season temperatures. 
The significant and spatially invariable temperature 
signal as well as the consistent exfoliation rates sup-
port the conclusion that climate rather than local site 
conditions control London plane stem growth and 
drought-induced bark peeling, limiting potential 
efforts to practically influence these variables in 
urban environments.

The conclusions from this pioneering study could 
be substantiated by including classic 40+ cm core 
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