Stable carbon isotope ratios of tree-ring cellulose from the site network of the EU-Project ‘ISONET’

ISONET Project Members, Schleser, Gerhard Hans1; Andreu-Hayles, Laia2; Bednarz, Zdzislaw3; Berninger, Frank4; Boettger, Tatjana5; Dorado-Liñán6; Isabel; Esper, Jan7; Grabner, Michael8; Gutiérrez, Emilia9; Helle, Gerhard10; Hilasvuori, Emmi11; Jugner, Högne12; Kalela-Brundin, Maarit13; Krąpiec, Marek14; Leuenberger, Markus15; Loader, Neil J.16; Masson-Delmotte, Valérie17; Pawelczyk, Sławomira18; Pazdur, Anna18; Pukienė, Rūtilė19; Rinne-Garmston, Katja T.21; Saracino, Antonio20; Saurer, Matthias21; Sonninen, Eloni21; Stiévenard, Michel17; Switsur, Vincent R.22; Szychowska-Krąpiec, Elżbieta14; Todaro, Luigi24; Treydte, Kerstin21; Vitas, Adomas25; Waterhouse, John S.22; Weigl-Kuska, Martin26; Wimmer, Rupert8

1. FZJ Research Center Jülich, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
2. Tree Ring Lab, Lamont-Doherty Earth Observatory of Columbia University, Palisades NY, United States
3. Department of Forest Biodiversity, Agricultural University, Krakow, Poland
4. Faculty of Science and Forestry, Department of Environmental and Biological Sciences, Joensuu, Finland
5. Department of Isotope Hydrology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
6. Universidad Politecnica de Madrid, Forest Genet & Ecophysiol Res Grp, Ciudad Univ S-N, Madrid, Spain
7. Johannes Gutenberg University of Mainz, Department of Geography, Mainz, Germany
8. Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences - BOKU, Vienna, Austria
9. Department of Biological Evolution, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
10. GFZ German Research Centre for Geosciences, Potsdam, Germany
11. Laboratory of Chronology, University of Helsinki, Natural Resources Institute Finland (Luke), Helsinki, Finland
12. Laboratory of Chronology, University of Helsinki, Finnish Museum of Natural History, Helsinki, Finland
13. The Museum of Forestry, Lycksele, Sweden
14. Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Krakow, Poland
15. Physics Institute, Climate and Environmental (CEP), Bern, Switzerland
16. Swansea University, Swansea, United Kingdom
17. Laboratory for Climate and Environmental Sciences, CEA/CNRS, UVSQ, Gif-sur-Yvette, France
18. Department of Radioisotopes, Silesian University of Technology, Gliwice, Poland
19. The State Scientific Research Institute Nature Research Centre, Vilnius, Lithuania
20. Università degli Studi di Napoli Federico II, IT-Portici (Naples), Italy
21. Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
22. Department of Biomedical and Forensic Science, Anglia Ruskin University, Cambridge, UK
23. Institute of Physics, Silesian University of Technology, Gliwice, Poland
24. School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Potenza, Italy
25. Environmental Research Centre, Vytautas Magnus University, Kaunas, Lithuania
26. Holzforschung Austria, Wien, Austria
1. Licence

Creative Commons Attribution 4.0 International License (CC BY 4.0)

2. Citation

When using the data please cite:
ISONET Project Members; Schleser, Gerhard Hans; Andreu-Hayles, Laia; Bednarz, Zdzislaw; Berninger, Frank; Boettger, Tatjana; Dorado-Liñán, Isabel; Esper, Jan; Grabner, Michael; Gutiérrez, Emilia; Helle, Gerhard; Hilasvuori, Emmi; Jugner, Högne; Kalela-Brundin, Maarit; Krapiec, Marek; Leuenberger, Markus; Loader, Neil J.; Masson-Delmotte, Valérie; Pawelczyk, Sławomira; Pazdur, Anna; Pukienė, Rūtilė; Rinne-Garmston, Katja T.; Saracino, Antonio; Saurer, Matthias; Sonninen, Eloni; Stévenard, Michel; Switsur, Vincent R.; Szychowska-Krapiec, Elżbieta; Szczepanek, M.; Todaro, Luigi; Treydte, Kerstin; Vitas, Adomas; Waterhouse, John S.; Weigl-Kuska, Martin; Wimmer, Rupert (2022): Stable carbon isotope ratios of tree-ring cellulose from the site network of the EU-Project ‘ISONET’. GFZ Data Services. https://doi.org/10.5880/GFZ.4.3.2023.002

The data are supplementary material to:
See References

Table of contents

1. Licence .. 2
2. Citation .. 2

Table of contents .. 2

3. Data Description ... 3
 3.1. Sampling method ... 3
 3.2. Analytical procedure ... 3
 3.2.1. Dendrochronological cross-dating and dating ... 3
 3.2.2. Sampling for stable isotope analysis ... 3
 3.2.3. Cellulose extraction ... 3
 3.2.4. IRMS Analyses of cellulose samples .. 4
 3.3. Data processing ... 4

4. File description ... 4
 4.1. File inventory .. 4
 4.2. Description of data tables .. 4

5. References - Data are supplementary material to .. 5

6. References – in general .. 6
3. Data Description

24 European annually resolved stable isotope chronologies have been constructed from tree ring cellulose for the last 400 years (1600CE – 2003CE) for carbon and oxygen and for the last 100 years for hydrogen. Data was produced within the ISONET project (400 Years of Annual Reconstructions of European Climate Variability Using a Highly Resolved Isotopic Network,) to initiate an extensive spatiotemporal tree-ring stable isotope network across Europe funded as part of the fifth EC Framework Programme “Energy, Environment and Sustainable Development”. This dataset comprises the ISONET δ13C records.

3.1. Sampling method

Fifteen or more co-dominant Pinus sylvestris, Quercus robur/petraea or Cedrus atlantica tree individuals of similar age from each site were cored at about 1.5 m above ground from two opposite positions using an increment corer of 5 mm diameter (Suunto, Finland or Mora, Sweden).

3.2. Analytical procedure

3.2.1. Dendrochronological cross-dating and dating

Dendrochronological cross-dating and dating was performed following standard dendrochronological procedures (Cook, 1990). Tree rings were visually crossdated and tree-ring widths (TRW) were measured at 0.01 mm precision. Cross-dating validation was carried out following standard procedures (Holmes, 1983).

3.2.2. Sampling for stable isotope analysis

Four to five precisely dendro-dated trees were selected for stable isotope analyses. Individual tree rings were dissected using razor blades or scalpels. Visible rays and other identified parenchymatous structures were removed from the wood slices to minimize possible contamination. While whole tree rings of P. sylvestris and C. atlantica were used, only latewood (LW) of individual tree rings from Q. petraea/robur was processed further after separation from earlywood (EW). Obtained wood samples of different radii and trees of each site were pooled year by year (Borella et al., 1998; Treydte et al., 2001; Laumer et al., 2009). For the Swiss Quercus site at Cavergno site (CAV) no separation between early- and latewood was possible because the rings were too narrow. Wood samples were homogenized by grinding (Retsch ZM1 Ultrazentrifugalmühle or coffeemill; (Borella et al., 1998; Treydte et al., 2001) or ultra-sonic treatment (UP200s Hielscher Ultrasound, Teltow, Germany; (Laumer et al., 2009) before or after extraction of cellulose, respectively.

3.2.3. Cellulose extraction

The cellulose extraction procedure from wood was performed following the Jayme-Wise chemical approach (Jayme, 1942; Wise, 1945; Green, 1963) in a multistage procedure using (1) solvent extraction to remove minor components like resins (pretreatment), (2) delignification with acidified sodium chlorite (bleaching), and (3) subsequent alkaline hydrolysis with sodium hydroxide solution (purification) to eliminate short-chain cellulose products and other possible intermixtures such as mannan and xylan. Each participating laboratory has used their own routine procedure. For quality assurance of the cellulose extraction procedures six standard woods were distributed among the participating laboratories and processed together with normal samples regularly. Details on the cellulose extraction methods used by different participants (such as the identity and concentration of
reagents, treatment time, and reaction temperatures) are summarized by Boettger et al. (2007). The extracted cellulose samples were split in three parts for the analysis of the three isotope ratios (13C/12C, 18O/16O, D/H). Prior to IRMS analysis all samples were freeze-dried for at least 48 h.

3.2.4. IRMS Analyses of cellulose samples
Measurements of carbon isotope ratios were carried out using standard IRMS systems coupled to Elemental Analyzers at a combustion temperature of 1020 °C. For quality assurance of the IRMS measurements IAEA reference material was used (e.g. C-3, cellulose), as well six standard woods distributed among the participating laboratories. Furthermore, interlaboratory comparisons were performed (Boettger et al., 2007). The details of δ13C and δ18O analyses are described in Treydte et al. (2007) and in the site-specific publications listed in “2023-002_ISO net-Project-Members_13C_ISO net-Sites-Information.xlsx”.

3.3. Data processing
The δ13C values of all sites are referenced to the IAEA Vienna PDB (VPDB). The long-term estimated upper limit for methodical error in IRMS measurements of δ13C of the cellulose samples was 0.15‰ (Boettger et al., 2007; Treydte et al., 2007).

4. File description

4.1. File inventory
Files are provided in the zipped folder “2023-002_ISO net-Project-Members_13C_Data” and contain:
- 2023-001_ISO net-Project-Members_13C_Data as excel and tab delimited txt files
- 2023-001_ISO net-Project-Members_13C_Data-Description.pdf
- 2023-002_ISO net-Project-Members_13C_ISO net-Sites-Information.xlsx
- 2023-001_ISO net-Project-Members-Members-and-Contributord.xlsx

4.2. Description of data tables
The first 10 lines of each column contains information about the site: Site code (3-letter code for each site), site name (name of forest site or nearest town), latitude (geographic coordinates, latitude in decimal degrees), longitude (geographic coordinates, longitude in decimal degrees), species (latin name of tree species), first year (first (oldest) year (CE) of δ13C site record), last year (last (youngest) year (CE) of δ13C site record), elevation (average elevation of tree site in meters above sea level). Missing values are indicated as NA (not analysed).

<table>
<thead>
<tr>
<th>Column header</th>
<th>unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site code</td>
<td></td>
<td>3-letter code for each site</td>
</tr>
<tr>
<td>Year CE</td>
<td>Year CE</td>
<td>Date of tree ring</td>
</tr>
<tr>
<td>13CVPDB</td>
<td>13C/12C ratio</td>
<td>13C/12C ratio in per mil versus Vienna PDB (VPDB)</td>
</tr>
</tbody>
</table>
5. References - Data are supplementary material to

6. References – in general

