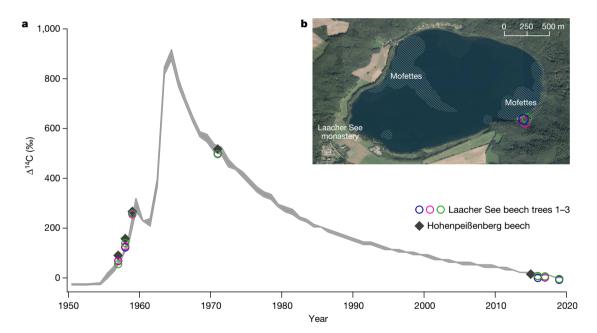
Matters arising

Reply to: Possible magmatic CO₂ influence on the Laacher See eruption date

https://doi.org/10.1038/s41586-023-05966-0

Published online: 5 July 2023


Check for updates

Frederick Reinig¹[™], Lukas Wacker², Olaf Jöris^{3,4,5}, Clive Oppenheimer⁶, Giulia Guidobaldi⁷, Daniel Nievergelt⁷, Florian Adolphi^{8,9}, Paolo Cherubini^{7,10}, Stefan Engels¹¹, Jan Esper¹, Frank Keppler^{12,13}, Alexander Land^{14,15}, Christine Lane⁶, Hardy Pfanz¹⁶, Sabine Remmele¹⁴, Michael Sigl¹⁷, Adam Sookdeo² & Ulf Büntgen^{6,7,18,19}

REPLYING TO J. U. L. Baldini et al. Nature https://doi.org/10.1038/s41586-023-05965-1 (2023)

We agree with Baldini et al.¹ that the Laacher See tephra (LST) is a key Late Pleistocene chronostratigraphic unit across much of Europe. We also agree that the LST needs to be dated precisely to synchronize proxy archives and to better understand climate and environmental changes during the Late Glacial period. However, we disagree that our radiocarbon (¹⁴C) measurements from three subfossil trees killed and buried at different locations by the pyroclastic deposits of the Laacher See eruption (LSE)² are possibly affected by outgassing magmatic carbon dioxide (CO₂). Although the release of CO₂ from active volcanic systems can influence ¹⁴C values³, we here provide both relict and modern radiocarbon evidence to demonstrate why our LSE date of 13,006 \pm 9 calibrated years before present (BP; taken as AD 1950) is correct.

First, in the relict dataset, we found no offset between, or drop in, our high-resolution ¹⁴C measurements from individual trees (Extended Data Fig. 1 and figure 3 of ref. 2). Despite different cardinal directions, all

Fig. 1 | New Δ^{14} **C** measurements from living beech trees at the eastern shore of the Laacher See. **a**, The Δ^{14} C results of three trees (coloured circles) from 1957, 1958, 1959, 1971, 2016, 2017 and 2019 in the immediate vicinity of CO₂ fumaroles are in line with Δ^{14} C reference measurements from Hohenpeißenberg, Bavaria, in southern Germany (black diamonds) and the IntCal2O calibration curve¹¹ (grey shading). **b**, Map of the Laacher See and location of the three sampled trees, 1–10 m off the eastern shore of the Laacher See (digital orthophoto courtesy of the surveying and cadastral administration Rhineland-Palatinate), and the spatial distribution of the CO₂ vents, or mofettes (hashed lines; adapted from ref. 10). The map was produced using QGIS.

¹Department of Geography, Johannes Gutenberg University, Mainz, Germany. ²Laboratory of Ion Beam Physics, ETH Zurich, Zurich, Switzerland. ³Leibniz-Zentrum für Archäologie–MONREPOS Archaeological Research Centre and Museum for Human Behavioural Evolution, Neuwied, Germany. ⁴Institute of Ancient Studies, Department of Prehistoric and Protohistoric Archaeology, Johannes Gutenberg University, Mainz, Germany. ⁵Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China. ⁶Department of Geography, University of Cambridge, Cambridge, UK. ⁷ Forest Dynamics/Dendrosciences, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland. ⁸Alfred Wegener Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany. ⁹Department of Geosciences, University of Bremen, Bremen, Germany. ¹⁰Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada. ¹¹Department of Geography, Birkbeck University of London, London, UK. ¹²Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany. ¹³Heidelberg Center for the Environment, Heidelberg University, Heidelberg, Germany. ¹⁴Institute of Biology (190a), University of Hohenheim, Stuttgart, Germany. ¹⁵Silviculture & Forest Growth and Yield, University of Applied Forest Sciences, Rottenburg am Neckar, Germany. ¹⁶Institute of Applied Botanics and Volcanic Biology, Universitä Duiburg-Essen, Essen, Germany. ¹⁷Climate and Environmental Physics, Physics Institute, Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland. ¹⁸Clobal Change Research Institute of the Czech Academy of Sciences (CzechGlobe), Brno, Czech Republic. ¹⁹Department of Geography, Faculty of Science, Masaryk University, Brno, Czech Republic.

Matters arising

existing ¹⁴C measurements from different locations around the Laacher See reveal statistically similar ages^{4,5} (Extended Data Table 1). These measurements are also synchronized with independent ¹⁴C dates from subfossil wood originating more than 330 km away from the Laacher See⁶. An additional interlaboratory comparison⁸ of ¹⁴C data from an elk skeleton covered by LST at Miesenheim IV close to Laacher See⁷, gave a weighted mean ¹⁴C date of 11,092 ± 19 BP, which corroborates all wood-based ¹⁴C dates. These findings confirm that effects of active fumarole outgassing are, if at all, restricted to local scales⁹, because of the known mobility of large ungulates.

Second, new ¹⁴C measurements of three living beech trees directly exposed to active fumaroles¹⁰ at the eastern shore of the Laacher See (Fig. 1) are in temporal agreement with twentieth-century regional and global Δ^{14} C reference data¹¹ (Fig. 1, Extended Data Fig. 2 and Extended Data Table 2). Despite the immediate proximity to active magmatic CO₂ emissions, none of the trees in this closed-canopy stand showed a bias in recent ¹⁴C data between 1957 and 2019, which rejects any speculation about possible dating issues with biological material from the Laacher See region. These findings represent the closest analogue of possible outgassing effects of an active magma chamber before the LSE at 13,006 ± 9 calibrated years BP.

Data availability

The data used for this study are provided with this paper or are available from the references cited.

 Baldini, J. U. L. et al. Possible magmatic CO₂ influence on the Laacher See eruption date. Nature https://doi.org/10.1038/s41586-023-05965-1 (2023).

- Reinig, F. et al. Precise date for the Laacher See eruption synchronizes the Younger Dryas. Nature 595, 66–69 (2021).
- Cook, A. C., Hainsworth, L. J., Sorey, M. L., Evans, W. C. & Southon, J. R. Radiocarbon studies of plant leaves and tree rings from Mammoth Mountain, CA: a long-term record of magmatic CO₂ release. *Chem. Geol.* **177**, 117–131 (2001).
- Street, M. Ein Wald der Allerödzeit bei Miesenheim, Stadt Andernach (Neuwieder Becken). Archäol. Korresp. 16, 13–22 (1986).
- Baales, M., Bittmann, F. & Kromer, B. Verkohlte Bäume im Trass der Laacher See-Tephra bei Kruft (Neuwieder Becken): ein Beitrag zur Datierung des Laacher See-Ereignisses und zur Vegetation der Allerød-Zeit am Mittelrhein. Archäol. Korresp. 28, 191–204 (1998).
- Kromer, B., Spurk, M., Remmele, S., Barbetti, M. & Joniello, V. Segments of atmospheric ¹⁴C change as derived from Late Glacial and Early Holocene floating tree-ring series. *Radiocarbon* 40, 351–358 (1998).
- Baales, M. et al. Impact of the Late Glacial eruption of the Laacher See volcano, central Rhineland, Germany. Quat. Res. 58, 273–288 (2002).
- Kuzmin, Y. V. et al. A laboratory inter-comparison of AMS ¹⁴C dating of bones of the Miesenheim IV elk (Rhineland, Germany) and its implications for the date of the Laacher See eruption. Quat. Geochronol. 48, 7–16 (2018).
- Bruns, M., Levin, I., Münnich, K. O., Hubberten, H. W. & Fillipakis, S. Regional sources of volcanic carbon dioxide and their influence on [™]C content of present-day plant material. *Radiocarbon* 22, 532–536 (1980).
- Goepel, A., Lonschinski, M., Viereck, L., Büchel, G. & Kukowski, N. Volcano-tectonic structures and CO₂-degassing patterns in the Laacher See basin, Germany. *Int. J. Earth* Sci. 104, 1483–1495 (2015).
- Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).

Author contributions F.R., O.J., J.E. and U.B. wrote the Reply with input from all authors. F.K. provide material for modern radiocarbon measurements, which L.W. measured.

Competing interests The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Frederick Reinig. Reprints and permissions information is available at http://www.nature.com/reprints. Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2023