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Abstract

Dendroclimatology offers the unique opportunity to reconstruct past climate

at annual resolution and wood from historical buildings can be used to

extend such information back in time up to several millennia. However, the

varying and often unclear origin of timbers affects the climate sensitivity of

individual tree-ring samples. Here, we compare tree-ring width and density

of 143 living larch (Larix decidua Mill.) trees at seven sites along an

elevational transect from 1400 to 2200 m asl and 99 historical tree-ring series

to parametrize state-of-the-art classification models for the European Alps.

To achieve geographical provenance of the historical series, nine different

supervised machine learning algorithms are trained and tested in their capa-

bility to solve our classification problem. Based on this assessment, we con-

sider a tree-ring density-based and a tree-ring width-based dataset for model

building. For each of these datasets, a general not species-related model

and a larch-specific model including the cyclic larch budmoth influence

are built. From the nine tested machine learning algorithms, Extreme

Gradient Boosting showed the best performance. The density-based models

outperform the ring-width models with the larch-specific density model

reaching the highest skill (f1 score = 0.8). The performance metrics reveal

that the larch-specific density model also performs best within individual

sites and particularly in sites above 2000 m asl, which show the highest tem-

perature sensitivities. The application of the specific density model for larch

allows the historical series to be assigned with high confidence to a particular

elevation within the valley. The procedure can be applied to other prove-

nance studies using multiple tree growth characteristics. The novel approach

of building machine learning models based on tree-ring density features

allows to omit a common period between reference and historical data for

finding the provenance of relict wood and will therefore help to improve

millennium-length climate reconstructions.
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INTRODUCTION

The ability of computers to learn on the basis of existing data
(machine learning [ML]) bears great potential to improve
various scientific fields including bio- and geoscience
(Jordan & Mitchell, 2015; Keitt & Abelson, 2021). In
tree-ring research, ML has recently been applied for model-
ing stem diameter growth and vessel lumen or for climate
reconstruction purposes (Bodesheim et al., 2022; Jevšenak &
Skudnik, 2021; Ou et al., 2019; Salehnia & Ahn, 2022). In the
(paleo)climatological context, tree-rings are an essential
source to reconstruct past climate fluctuations beyond the
instrumental period. Classical approaches consider the
relation between climate elements (e.g., temperature or
precipitation) and a tree-ring proxy, for example, tree-ring
width (TRW) or maximum latewood density (MXD),
by scaling or building linear regression models (Briffa
et al., 1992; Cook et al., 2019; Cook & Kairiukstis, 1990;
Esper et al., 2005, 2012; Gurskaya et al., 2012; Lara
et al., 2020; Li et al., 2012; Wilson & Luckman, 2003).
ML algorithms are tested as transfer functions for this
relationship by training artificial neural networks, ran-
dom forests, or boosted regression trees (Gu et al., 2019;
Jevšenak et al., 2018; Jevšenak & Skudnik, 2021;
Salehnia & Ahn, 2022).

Besides a robust growth-climate model, multi-centennial
reconstructions rely on dead wood to extend living chronolo-
gies into the past. These samples are often collected from
local historical construction wood of unknown origin
(Büntgen et al., 2005; Hartl et al., 2022; Klippel et al., 2020;
Labuhn et al., 2016; Liu et al., 2009; Schweingruber, 1988;
Tegel et al., 2010; Wilson et al., 2005). The determination
of the origin of ancient wood, the so-called dendropro-
venancing, is a frequently applied tool to reconstruct
trade and transportation routes (Bonde et al., 1997;
Daly & Tyers, 2022; Linderholm et al., 2021; Shindo &
Claude, 2019; Wazny, 2002), to uncover illegal logging
(Kagawa & Leavitt, 2010), and determine the origin of
artwork or shipwrecks (Bridge, 2011; Brookhouse et al.,
2021; Domínguez-Delm�as et al., 2020; Haneca et al.,
2005). Classic approaches in dendroclimatology
and -archaeology consider the correlation of series from
unknown origin to a set of existing reference tree-ring
chronologies (Bonde, 1992; Bridge, 2012). It is argued,
however, that this classical dendroprovenancing with
chronologies not always serves the complexity in the rela-
tionship between tree growth parameters and regionality

(Bridge, 2000, 2012; Domínguez-Delm�as et al., 2020;
Drake, 2018; Haneca et al., 2005).

The application of ML is likely suitable for a probable
higher complexity in this relationship. Approaches have
been tested with different tree-ring proxies using multiple
regression models (Dittmar et al., 2012; Wilson et al.,
2004), or the ML algorithms k-nearest neighbor (kNN)
(Gut, 2018), principal component analysis (PCA) (Wilson
& Hopfmueller, 2001), or principal component gradient
analysis (PCGA) (Akhmetzyanov et al., 2020; Buras
et al., 2016). While PCGA and PCA rely on a common
period of overlap between living and historical series for
determining the provenance, Dittmar et al. (2012) used
features of individual tree series to build a nonlinear
regression model. However, many published approaches
in dendroprovenancing generally lack basic ML model
development steps like testing different algorithms and
hyperparameter combinations before opting for a fitting
algorithm. The a priori requirement of a common period
between historical samples and a reference for effective
dendroprovenancing remains the greatest challenge. The
potential of additional parameters such as MXD or
species-specific disturbance features (such as insect out-
breaks) has so far not been tested in ML provenance
models.

Dendroclimatological studies focus on regions, where
tree growth is limited by a dominating factor, for example,
the temperature at latitudinal or elevational tree line sites
(Babst et al., 2013; Briffa et al., 1988; Esper et al., 2016;
Hartl et al., 2021, 2022; Liu et al., 2009; Ljungqvist
et al., 2020; Schneider et al., 2015; Wilson et al., 2016).
Consequently, the quality of a tree-ring-based climate
reconstruction derived from living and historic wood
hinges on the consistency of the signal strength across the
proxy sources, as the temperature signal of trees fades with
decreasing elevation (Babst et al., 2013; Hartl-Meier,
Dittmar, et al., 2014; Hartl et al., 2021, 2022; Riechelmann
et al., 2020; Salzer et al., 2014; Wilson et al., 2004, 2015;
Zhang et al., 2015). At lower elevations, other biotic factors,
for example, intra- and interspecific competition or trophic
interactions with insects, can influence tree growth
(Coomes & Allen, 2007; Harr et al., 2021; Hartl-Meier
et al., 2017; Hartl-Meier, Zang, et al., 2014; Saulnier
et al., 2017; Wilson et al., 2015). Climate signals in
tree-rings of European larch (Larix deciduaMill.), for exam-
ple, are superimposed by growth disturbances resulting
from larch budmoth (Zeiraphera griseana Hübner, LBM)
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mass outbreaks in the Alps (Baltensweiler et al., 2008;
Baltensweiler & Rubli, 1999; Esper et al., 2007; Hartl
et al., 2022; Hartl-Meier et al., 2017). LBM larvae feed on
the needles of larch trees, lowering photosynthetic capacity
and altering growth rates (Baltensweiler & Rubli, 1984).
Various studies on LBM mass outbreak cyclicity and effects
on larch growth conducted in the European Alps agree on
an occurrence rate of mass outbreaks of 8–10 years and
constrain outbreak locations largely to elevations between
1700 and 2000 m asl (Baltensweiler et al., 2008;
Baltensweiler & Rubli, 1999; Büntgen et al., 2009; Daux
et al., 2011; Esper et al., 2007; Hartl et al., 2022; Hartl-Meier
et al., 2016, 2017; Konter et al., 2015; Rolland et al., 2001;
Saulnier et al., 2017). Consequently, elevational classi-
fication of larch wood from such regions will be deter-
mined by the potentially inherent LBM signals of
historical series.

For paleoclimatological studies, the knowledge of the
sample origin of historical material is likewise important
to adequately remove age-dependent growth trends
(Bräker, 1981). The commonly applied regional curve stan-
dardization (RCS; Briffa et al., 1992) must be performed
site by site or on mean-adjusted series (Römer et al., 2021;
Zhang et al., 2015), because altitude-dependent offsets
among MXD (and TRW) series are observed for European
larch (Hartl et al., 2022; King et al., 2013; Riechelmann
et al., 2020; Rozenberg et al., 2020; Zhang et al., 2015).
Neglecting the elevational discrepancies of the regional
curves could bias the amplitudes and long-term trends
of a subsequent climate reconstruction severely, thus
leading to a misinterpretation of past climate variability
(Hartl et al., 2022; Riechelmann et al., 2020; Zhang
et al., 2015).

In this study, we aim at improving dendropro-
venancing by applying state-of-the-art ML procedures to
eventually strengthen millennium-length climate recon-
structions. We use 149 samples of living larch trees from
an elevational transect ranging from 1400 to 2200 m asl in
the Simplon Valley of the Swiss Alps and test nine differ-
ent ML algorithms. We fit the best performing algorithm
to different sets of tree-ring parameters and, for the first
time, include x-ray measurements and species-specific
parameters in a provenance model.

MATERIALS AND METHODS

Tree-ring datasets and study area

Eight larch datasets were collected in the Simplon
Valley, Switzerland. One of these contains 99 historical
series from different buildings in the Simplon Village
(~1470 m asl) (introduced in Riechelmann et al., 2013,

2020). The seven living tree sites span an elevational
transect from 1400 to 2200 m asl, with four sites south
exposed (S14, S17, S20, and S22) and three north exposed
(N16, N17, and N19) (Figure 1; Appendix S1: Table S1).
Each site consists of up to 24 series from 12 trees
(see Hartl et al., 2022). The two sites at 1700 m asl
(S17 and N17) are merged to one dataset SN17 including
12 series from each site to represent this elevation. Both,
the living and historical series, have been accurately dated
to build a robust chronology (Figure 2).

Dendrochronological measurements and
tree-ring parameters

In total, 242 high-resolution tree-ring density profiles
were measured using a Walesch2003 (WALESCH,
Electronic GmbH, Switzerland) following the x-ray densi-
tometry procedure described in Björklund et al. (2019).
We considered six different tree-ring parameters: TRW,
MXD, earlywood ring width (EWW), earlywood density
(EWD), latewood ring width (LWW), and latewood den-
sity (LWD) (Appendix S1: Table S2). Descriptive statistics
were calculated and forwarded into the ML models
including the arithmetic mean, standard deviation (SD),
skewness (skew), Gini coefficient (gini), and maximum/
minimum values (max/min). Additional parameters
include the age (including the pith offset), the first-order
autocorrelation of TRW (A1 TRW), and the ratio between
EWD and LWD (ED/LD ratio). To address the LBM mass
outbreak mean cyclicity of 9 years, the spectrum value at
1.11 frequency (9 years) was determined by applying
Lomb–Scargle Fourier transformation to 30-year spline
detrended TRW series. A dataset D of all living series
containing their parameters, from here on referred to as
features, and corresponding elevations was created using
R 4.1.0 (R Core Team, 2021) and the dplR package
(Bunn, 2010).

Site-specific chronology building and
climate signals

To illustrate the fading of the temperature signal with
decreasing elevation, the living tree-ring data (TRW and
MXD) were site-wise power transformed and RCS
detrended (Briffa et al., 1992; Esper et al., 2003) using the
software ARSTAN (Cook, 1985). Site chronologies were
constructed by averaging single series with a robust mean
and the chronology variance was stabilized using the Rbar
weighted method (Osborn et al., 1997). Temperature corre-
lations between site chronologies and gridded temperature
data (EOBS 0.25� v23.1e; Cornes et al., 2018) were
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F I GURE 2 Segment plots of the historic (a) and the living tree samples (b) aligned by start date. Colors in (b) denote the different sites

of the living material (Figure 1c).

F I GURE 1 Study area in the Simplon Valley, Switzerland (a, b) and sampling scheme with site codes (c), exact elevations are shown in

Appendix S1: Table S1. Sampling of high-elevation living trees with a high temperature sensitivity (d) and of historical construction timber

in the lower elevated Simplon Village (e) (Photo credits: P. Schulz, C. Hartl).
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calculated via classical bootstrap of Pearson’s correlation
coefficients for the summer seasons June–August (JJA)
over the 1928–2009 common period using the R packages
treeclim (Zang & Biondi, 2015) and dplR (Bunn, 2010).

Developing a ML model for
dendroprovenancing

In supervised learning, a model is fit for a classification
or regression task to a labeled dataset (e.g., D)
(Figure 3a). Using a training dataset Dtrain of an input
matrix X, the model must predict the corresponding tar-
get vector y with a prediction ŷ. During training, the set-
tings of the given model are adjusted by computing and
minimizing the total loss

L¼
Xm

i¼1

l yi, ŷið Þ, ð1Þ

where m equals the number of entries (number of
tree-ring series) in Dtrain and l is a loss function
(e.g., cross-entropy). To assure that the model has not
only learned Dtrain by heart but has adopted a meaningful
representation that generalizes to unseen data, it is
applied to a test dataset Dtest. Potential hyperparameters
of a model can be adjusted using a validation dataset Dval

(Vapnik, 1991; Ying, 2019). Here, the input matrix X of
the 143 living tree series from varying elevational sites
between 1400 and 2200 m asl was split into Dtrain and
Dtest using a stratified sampling by elevation to ensure a
representation of all sites in both sets (80:20 split). In the

second split, Dtrain was divided by stratified sampling into
the final Dtrain and Dval (80:20 split). We tested nine different
ML classification algorithms on Dtrain: kNN (Fix & Hodges,
1951), Ridge Regression (Hoerl & Kennard, 2000), Logistic
Regression (here Softmax Regression) (Berkson, 1944),
Support Vector Machines (Vapnik & Chervonenkis, 1974),
Stochastic Gradient Decent (Kiefer & Wolfowitz, 1952),
Gaussian Naïve Bayes (Zhang, 2004), Random Forest
(Breiman, 2001), Linear Discriminant Analysis (Fisher,
1936), and Extreme Gradient Boosting (XGBoost) (Chen &
Guestrin, 2016). The hyperparameters of the algorithms
(e.g., maximum tree depth or learning rate) were fine-tuned
using grid search and stratified k-fold cross-validation
(k = 10) on Dtrain ensuring the consideration of the specified
combinations (chosen hyperparameters are listed in
Appendix S1: Table S3). Afterwards, the models’ perfor-
mances were tested again onDtrain using a repeated stratified
k-fold cross-validation (k = 10 and repeats = 100) to choose
the best performingML algorithm.

We measured the performance of the models using f1
score, precision, and recall:

f1 score¼ 2×
precision × recall
precision+ recall

, ð2Þ

with

precision¼ TruePositive
TruePositive +FalsePositive

, ð3Þ

and

recall¼ TruePositive
TruePositive +FalseNegative

: ð4Þ

F I GURE 3 Basic machine learning scheme (a) and a simplified gradient boosting scheme (b) with two classes (solid circle or open diamond).
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Precision describes the correctly sorted series per
elevational class, while recall counts the number of
series, which belong to a certain class but are not
predicted into it (Géron, 2019). The f1 score over all clas-
ses per model was calculated as the arithmetic mean.

We find that highest f1 scores are reached by the
XGBoost algorithm (Appendix S1: Table S4) after strati-
fied repeated k-fold cross-validation with a mean f1
score of 0.7. XGBoost (Chen & Guestrin, 2016) is based
on the gradient boosting algorithm by Friedman (2001),
which iteratively builds an ensemble model consisting
of multiple decision trees by minimizing the loss func-
tion in each iteration (see Figure 3b as simplified classi-
fication scheme with two target classes [solid circle or
open diamond]). The algorithm proceeds until a final
model N is found specified by a stopping criterion
(Ying, 2019).

Based on the applicability in tree-ring science, four
different XGBoost models were trained on different combi-
nations of the features. Twomodels were trained on all den-
sity and ring-width features: a general not species-related
(39 features, DMgen) and a larch-specific model including
the 9-year spectrum (40 features, DMsp). Two additional
models excluding densitometric measured features were
built: a general cross-species ring-width model (RWMgen,
seven features) and a larch-specific ring-width model
(RWMsp, eight features). The average and site-wise perfor-
mances of these models were assessed on Dtest. Finally, a
feature matrix for the historical timber was built and fed to
the four XGBoost models. All models were implemented in
Python 3.8.5 (Van Rossum & Drake, 2009) with the pack-
ages Scikit-Learn (Pedregosa et al., 2011) and XGBoost
(Chen&Guestrin, 2016).

For comparison with existing methods for dendropro-
venancing, we additionally tested the performance of
these approaches with our living series of Dtrain and
Dtest. We built a regression model from the Dtrain

tree-ring series (following the approach of Wilson
et al., 2004) based on the correlation between the
individual site chronologies and the highest elevation
chronology S22 (2200 m asl). We also tested a PCGA
approach (Buras et al., 2016) on our tree-ring parame-
ters (TRW, MXD, EWW, EWD, LWW, and LWD) to
check for differences in PCGA loadings. The tree-ring
series of Dtest were then sorted to a provenance fol-
lowing the steps described in Akhmetzyanov et al.
(2019, 2020). We used our LWD densitometry mea-
surements as equivalent substitutes for their use of
latewood blue intensity (Campbell et al., 2007).
Precision, recall, and f1 score were calculated for these
approaches to compare them with our XGBoost
models (Equations 2–4).

RESULTS AND DISCUSSION

Model performances on the test dataset

Testing the models revealed that DMsp and RWMsp

(Table 1) perform better than their species-independent
equivalents DMgen and RWMgen (Appendix S1: Table S5).
While DMgen and RWMgen reach average f1 scores of 0.69
and 0.25, the inclusion of the larch-specific LBM feature
increases the scores to 0.80 (DMsp) and 0.31 (RWMsp),
respectively. In DMsp, the highest site-wise f1 scores are
observed for the sites S22, N16, and S20 and it executes
better than DMgen in almost all sites, except for the
highest and the lowest elevations. This performance gain
is most pronounced in SN17 and N19. The provenance
model results (Figure 4) imply that the LBM signals
appear to be stronger at these sites and serve as an impor-
tant feature for site distinctions in DMsp (Figure 4c). This
is also reflected by the high feature importance of the
LBM spectrum (Figure 4d) and the increased perfor-
mance of RWMsp compared with RWMgen at site N19
(Table 1, Appendix S1: Table S5). Our results indicate
that future applications of likewise models should be
tested with and without tree species-related characteris-
tics (e.g., interactions with insects) when specific influ-
ences on growth are known and observed. Even though
the ring-width models themselves are not very reliable,
including site- or species-specific information improved
the model’s ability to distinguish sites (mean f1 scores:
0.25 in RWMgen and 0.31 in RWMsp). The comparison of
models with and without disturbance effects can offer the
chance to detect site-specific influences such as LBM
mass outbreaks and support the assessment of past dis-
turbances in historical series. However, the increased per-
formances of the larch-specific models in our example
reflect the distinct impact of LBM outbreaks on larch

TABL E 1 Classification report: performance metrics of Dtest
a

on DMsp
b and RWMsp

c (in brackets) in each individual class.

Site Precision Recall f1 score

S14 0.57 (0.57) 0.8 (0.8) 0.67 (0.67)

N16 1 (0.40) 1 (0.4) 1 (0.4)

SN17 0.75 (0.0) 0.6 (0.0) 0.67 (0.0)

N19 0.6 (0.6) 0.6 (0.6) 0.6 (0.6)

S20 1 (0.0) 0.75 (0.0) 0.86 (0.0)

S22 1 (0.17) 1 (0.2) 1 (0.18)

Average 0.82 (0.29) 0.79 (0.33) 0.8 (0.31)

aTest dataset.
bLarch specified density and ring-width parameter model.
cLarch specified ring-width parameter model.
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growth and raise the question of whether general not
species-related models will have increased performances
when applied to undisturbed nonhost species like the
Swiss pine (Pinus cembra L.). In the Simplon Valley, the
inherent LBM signal strength on certain elevations has a
strong influence on the performance of provenance models
for larch trees. When working with species, which react
similarly to a disturbance, a feature that describes the
strength of this disturbance on each individual tree-ring
series should be considered.

Including tree-ring density features generally improves
model results. The ring-width models are not able to distin-
guish SN17 and S20 from the other sites (f1 scores = 0;
Table 1; Appendix S1: Table S5), produce more classification
errors on Dtest than the density models (sum of errors for
RWMgen = 21, RWMsp = 19, DMgen = 9 and DMsp = 6),

andmisclassify series belonging to SN17 to S22. With respect
to detrending, mistakenly handling low-elevation series as
high-elevation series can impact amean chronology, particu-
larly when suchmisplaced series are clustered during certain
periods. Additionally, RWMgen sorts series fromN19, charac-
terized by higher temperature sensitivities, to the lowest ele-
vated site, which contains no temperature signal (see rJJA in
Figure 4b). These errors will, however, not influence a tem-
perature reconstruction, as sites with a low climate response
should be excluded from a final chronology. Nonetheless,
the sample replication of useful historical series would be
reduced and uncertainties increased. In the Simplon Valley,
the ring-width models appear to lack the ability to correctly
determine the provenance and distinguishminor elevational
differences (≤200 m), although small-scale elevation steps
can result in differences in a tree species growth response to
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environmental factors (rJJA in Figure 4a,b; Bunn et al., 2011;
Hartl et al., 2022; Salzer et al., 2009, 2014).

The applied XGBoost algorithm is not able to find a
well-fitting model when trained on our ring-width features
and, as Akhmetzyanov et al. (2019) have already shown for
dendroprovenancing with PCGA, performs better when
tree-ring density measurements are included. We suggest
using DMsp for finding the provenance of our historical
tree-ring series, as it is the most reliable model indicated by
the highest f1 score and lowest number of prediction errors.
This unique dataset including density measurements and
LBM features is, however, tailored to larch trees from the
Simplon Valley. Datasets of varying species and other
regions might perform better with a different algorithm.

Extreme gradient boosting models
compared with previous
dendroprovenancing approaches

The performance of previous approaches on Dtest indicates
that these approaches are not suitable for our data as they
show lower performance scores and higher error numbers
than our DMsp. The application of PCGA to find the prove-
nance of the Dtest series resulted in f1 scores of 0.28 (LWD)
and 0.16 (TRW), respectively (Appendix S1: Figure S1a–c).
PCGA has demonstrated the ability to distinguish between
high- and low-elevation sites (Akhmetzyanov et al., 2020)
but does not appear to be able to determine the prove-
nance of the series as precise as the XGBoost model in this
study. Utilizing the method described in Wilson et al.
(2004) on the dataset indicates a nonlinear correlation
between the highest site and the other elevational chro-
nologies (Appendix S1: Figure S1a,d). The striking low
correlation between the highest site and the N19 chro-
nology might result from differing LBM signals between
the sites, which is supported by the observed perfor-
mance decrease in DMgen compared with DMsp at N19
(Table 1; Appendix S1: Table S5). Thus, fitting a linear
regression model on the series of Dtrain and testing
this model using Dtest reveals a lower f1 score of 0.25
(Appendix S1: Figure S1a).

Most existing approaches depend on a common period
between the historical and living tree-ring series, but even
when a common period is given, DMsp, DMgen, and RWMsp

outperform traditional dendroprovenancing approaches on
our dataset. The XGBoost models (but also all other tested
ML models, Appendix S1: Tables S3 and S4) do not require
a common period. Our approach has the advantage of
including specifications on certain regions or tree species
(here European larch) if needed and could likewise be
applied to other dendroprovenancing objectives, such as
shipwrecks or art provenance as well as trade or

transportation route studies (Bridge, 2011; Daly & Tyers,
2022; Linderholm et al., 2021; Shindo & Claude, 2019;
Wazny, 2002). Testing different ML algorithms, which
are independent of a common period, might enlarge
the pool of useable sites for these wood provenance studies
and could thereby improve detecting the geographical
origin.

Dendroprovenancing of historical timber
using extreme gradient boosting

The classification of historical material reveals differences
between our four models (Figure 4a,b). DMsp, DMgen, and
RWMgen classify most series to the lowest site S14, while
RWMgen sorts most series to N19. In contrast to their general
not species-related equivalents, the larch-specific models
classify more series to the LBM-influenced site N19 but less
series to the highest elevation sites. A comparison of the indi-
vidual series predictions reveals that most of the series
assigned to a higher elevation by DMgen were sorted to N19
by the larch-specific DMsp. This might again indicate that
information on the intensity of the LBM mass outbreaks
cyclicity influences a model’s differentiability of these sites
and thus the model outcomes. An assessment of the predic-
tions reveals that 26% of the historical series are sorted to dif-
ferent sites by DMsp and DMgen. With respect to the better
performance and lower number of errors of DMsp compared
with DMgen during the model validations, DMsp likely per-
forms more confidently with the historic series as well.
RWMgen indicates a similar problem outlining a tendency to
sort historical series to S20, while the larch-specific RWMsp

attributes them to N19. Both ring-width models have very
low performance scores as well as high error numbers on
Dtest and, compared with the density models, classify 49%
(RWMgen to DMgen) and 41% (RWMsp to DMsp) of the histor-
ical series differently. The discrepancy between RWMsp and
DMsp classifications persists throughout time (Figure 5), cul-
minating between 1250 and 1600 CE. This peak period is not
covered by living material (of known origin) and erroneous
predictions (e.g., from RWMsp) could lead to incorrect
variability or mean levels in an RCS detrended chronology
when historical series sorted to wrong elevations. As varying
allocations of historical series may bias long composite
chronologies differently in certain time periods, these chro-
nologies depend on a reliable provenance of historical series.

As the analyses onDtest implymore accurate predictions
by the DMsp in contrast to the other models, especially to
the ring-width models, the results of the classification of
historical timber by DMsp should be considered for further
proceedings. For a reconstruction, we suggest using series
allocated to the temperature-sensitive high-elevation
sites N19, S20, and S22. This will result in using only
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35 of 99 historical series but will improve the robustness of
the signal strength of these series. In the Simplon Valley,
these high-elevated sites show distinct offsets in their
regional curves (Hartl et al., 2022), which must be consid-
ered when merging samples and sites into one RCS run
(Esper et al., 2014). Excluding 54 historical series from a
chronology would, however, massively reduce the sample
replication. The period between 742 and 1450 CE will
almost never exceed five series per year and puts the devel-
opment of a continuous millennium-length climate recon-
struction at risk. Tree line shifts during the last millennium
can alter the elevational temperature signal strength and
bias climate reconstructions (Büntgen et al., 2022). The
provenance model cannot account for temporal changes in
tree line elevation, but it helps reduce the bias by excluding
historical series classified to recent lower elevations and
reveals the series from close tree line sites with a very high
likeliness of high temperature sensitivity.

Outlook and future applications of ML
algorithms in dendroprovenancing

Our new approach for dendroprovenancing using ML
shows considerable skill to differentiate tree-ring samples

over short distances and among different elevations.
While this application is limited to the Simplon Valley in
the Swiss Alps and European larch, the proposed
scheme (Figure 3a) could similarly be applied in other
provenance studies. If suitable, existing multi-centennial
to -millennial long chronologies, based on ex situ histori-
cal or relict wood, might be improved using ML tech-
niques. Improved provenance determination of dead
wood will increase the temporal stability of the climate
signal of a chronology and enable a more reliable recon-
struction of past climate.

Algorithms may also be trained with geographical coor-
dinates as target y and a matrix X of series features from dif-
ferent chronologies to detect wood trade routes and origins
of art or ship timber. It is mentionable that for different
study areas, the chosen final algorithm might not match
our best performing one, since tested algorithms might
outperform each other differently depending on the region
or species (Wolpert, 1996). We acknowledge that the avail-
able features in this study are unique and are often not
available in this quantity, hindering the exact reproduction
of the models. We consider the selected basic features of
our study as a good starting point, which can be extended
with other tree-ring parameters, for example, blue intensity,
wood anatomical features, dendrochemical parameters,
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biomarkers, or isotopic signatures, that are already tested in
other provenance studies (e.g., Akhmetzyanov et al., 2020;
Domínguez-Delm�as et al., 2020; Hajj et al., 2017; Traoré
et al., 2018). In the presented study, the LMB influence
strongly impacts the performance of our models. Therefore,
we suggest testing our approach with a nonhost species,
that is, with the tree-ring series of previous approaches, to
compare general cross-species models with each other. We
hypothesize that the reduced performance of a general
cross-species model (DMsp and RWMsp) likely results from
the LBM manifestations in the larch samples. Using an
undisturbed tree species might also result in better perfor-
mances of the ring-width models. More data from living
trees would likely improve training in the presented
models. The DMsp should especially be tested in future
studies using corresponding blue intensity features, because
it is a less labor- and cost-intensive approach for gaining
information on tree-ring density (Björklund et al., 2014;
Campbell et al., 2007; McCarroll et al., 2002).

CONCLUSION

Our novel approach using the ML algorithm XGBoost
with tree-ring density and width data including
species-specific features (DMsp) improved to determine
the provenance of wood of unknown origin without rely-
ing on a common period with (living tree) reference data.
The origin of 99 historical series was assigned along an
elevational transect ranging from 1400 to 2200 m asl.
Importantly, series from sites with diverging temperature
responses have been identified and were consequentially
excluded from a reconstruction. Our approach enables
the user to include multiple parameters of individual
trees and species and test various ML algorithms.
It reveals how model performances are impacted by tree
growth disturbances and how these performances can be
used to detect the strength of growth disturbances. Our
novel approach may serve as a framework for future
applications of ML and dendroprovenancing in tree-ring
research.
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