Multi-species tree growth response to climate change in southwestern Germany

P. Roemer¹, E. Martínez del Castillo¹, M.C.A. Torbenson¹, F. Reinig¹, O. Konter¹ and J. Esper^{1,2}

¹Department of Geography, Johannes Gutenberg University, 55099 Mainz, Germany ²Global Change Research Institute (CzechGlobe), 60300 Brno, Czech Republic

Introduction

- The extensive dieback of Central European tree species in the 21st century is driven by increasing drought and temperature stress^{1,2}.
- Southwest (SW) Germany has one of the warmest climates nationwide and was recently identified as a hotspot for future climate extremes³.
- However, tree-ring studies in SW Germany are sparse, limiting the accurate assessment of climate impacts on forest growth and health.

6

- 1. Which climate factors primarily control tree growth in SW Germany?
- 2. How has climate sensitivity changed in recent decades?
- 3. How big are differences between predominant tree genera?

Fig. 2: (a) Principal Component Gradient Analysis (PCGA) and **(b)** Hierarchical Cluster Analysis (HCA) after TRW standardization, both performed over the common period of all chronologies (1951-2009 CE). Each arrow in (a) and point in (b) represents one site chronology colored

Fig. 1: (a) Location of the study area in Europe and **(b)** of the individual sites in SW Germany. Sites are colored by their mean segment length (MSL). **(c)** Climate diagram for SW Germany (1951-1980 CE) and temporal changes of summer **(d)** temperatures⁴, **(e)** precipitation⁴ and **(f)** soil moisture index⁵ (SMI) for a layer covering the uppermost 180 cm (1951-2020 CE).

Material & Methods

- We here introduce a new multi-species tree-ring width (TRW) network of 51 low-elevation sites (>2100 trees) in SW Germany (Fig.1a-b), where the summer climate has become noticeably drier in recent decades (Fig.1c-f).
- We investigate the climate sensitivity of four major European tree genera (Abies, Picea, Pinus, Quercus) by calculating growth-climate correlations.

according to its tree genus. The HCA was applied to the 10-year-Spline detrended data.

Results

- PCGA reveals that genus-specific growth patterns are most distinct in the high-frequency domains (Fig.2a).
- HCA groups the 10yr-Spline detrended chronologies almost flawlessly into tree genus clusters (Fig.2b).
- Most TRW sites show significant correlations with summer hydroclimate, especially the Quercus sites (Fig.3).
- Correlations with soil moisture are higher than with climate variables.
- Quercus sites show highest correlations with current year soil moisture.
- Warmer sites are higher related to current year soil moisture, while cooler sites (T_{JJA}<15°C) are more dependent on previous year conditions, and this dependence becomes stronger toward the present (Fig.4).</p>

- Age-related growth trends were eliminated by standardization (Fig.2a).
- For each site, monthly climate and soil moisture data were extracted from the high-resolution CDC database⁴ and from the German Drought Monitor⁵.

Fig. 4: Classification of TRW sites according to their mean summer temperatures, **(b)** Pearson correlations between TRW and soil moisture of previous July-December (top) and current June-August (bottom) for the periods 1952-1980 CE (left) and 1981-2009 CE (right).

References

- Gazol, A. et al. (2022) Compound climate events increase tree drought mortality across European forests. Science of the Total Environment, 816, 151604.
- 2 Neumann, M. et al. (2017) Climate variability drives recent tree mortality in Europe. Global Change Biology, 23, 4788-4797.
- **3** German Environment Agency (2021): *Klimawirkungs- und Risikoanalyse für Deutschland Teilbericht 1*. Dessau-Roßlau.
- 4 Kaspar, F. et al. (2013) Monitoring of climate change in Germany data, products and services of Germany's National Climate Data Centre. Advances in Science & Research, 10, 99-106.
- 5 Zink, M. et al. (2016) The German drought monitor. *Environmental Research Letters*, 11, 074002.

apr may jun jul aug sep oct nov dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

Fig. 3: Pearson correlations between TRW and **(a-c)** climate variables and **(d)** soil moisture of the previous year (left) and current year (right) from 1952-2009 CE. Data were standardized with a 10-year Spline. Dashed red lines represent $\alpha = 0.05$ (small) and $\alpha = 0.01$ (large).

Conclusion

5

- Climate signals are limited to the high-frequency domains, likely due to the influence of forest management strategies.
- Summer hydroclimate and soil moisture are the main drivers of tree growth, especially for Quercus, but not for Abies.
- At colder sites, previous year soil moisture becomes more important.
- Quercus TRW shows potential to reconstruct past soil moisture extremes.