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Abstract: PM2.5 concentrations in urban areas are highly variable, both spatially and seasonally. To
assess these patterns and the underlying sources, we conducted PM2.5 exposure measurements at
the adult breath level (1.6 m) along three ~5 km routes in urban districts of Mainz (Germany) using
portable low-cost Alphasense OPC-N3 sensors. The survey took place on five consecutive days
including four runs each day (38 in total) in September 2020 and March 2021. While the between-
sensor accuracy was tested to be good (R2 = 0.98), the recorded PM2.5 values underestimated the
official measurement station data by up to 25 µg/m3. The collected data showed no consistent PM2.5

hotspots between September and March. Whereas during the fall, the pedestrian and park areas
appeared as hotspots in >60% of the runs, construction sites and a bridge with high traffic intensity
stuck out in spring. We considered PM2.5/PM10 ratios to assign anthropogenic emission sources
with high apportionment of PM2.5 in PM10 (>0.6), except for the parks (0.24) where fine particles
likely originated from unpaved surfaces. The spatial PM2.5 apportionment in PM10 increased from
September (0.56) to March (0.76) because of a pronounced cooler thermal inversion accumulating fine
particles near ground. Our results showed that highly resolved low-cost measurements can help to
identify PM2.5 hotspots and be used to differentiate types of particle sources via PM2.5/PM10 ratios.

Keywords: OPC-N3; particulate matter; personal exposure; mobile measurement; PM2.5/PM10 ratio

1. Introduction

The global perception of air quality and air pollutants such as particulate matter (PM)
has increased partly due to the COVID-19 pandemic [1,2]. While coarse particles with an
aerodynamic diameter between 2.5 and 10 µm (PM2.5–10) are inhalable, fine particles with
diameters <2.5 µm can reach the bronchial system and cause airway inflammation, lung
disfunction, and chronic obstructive pulmonary disease [3–5].

However, the toxicity of particles is not only determined by their absolute concentra-
tion but also varies between different types of PM, e.g., metallic elements of residual oil fly
ash have more adverse health effects than biogenic or inorganic components [6–8]. PM ele-
ments can be detected via chemical analyses, though in the absence of these measures, the
origin of particles can be attributed by calculating the ratio of PM2.5/PM10 [9,10]. Whereas
a weighting towards PM2.5 indicates emissions from combustion processes, i.e., vehicle
exhausts and house heating, a low ratio indicates natural emissions as sources, i.e., pollen
and leaf particles and/or fugitive or re-suspended road dust from tire and break abrasion,
for instance [7,9,11,12].

In urban areas, PM2.5/PM10 ratios can rapidly change over time due to short-term
variation in emission intensity, e.g., rush hour or non-rush hour, but also in response to
changing weather situations. Stationary anti-cyclonic weather in Central Europe is asso-
ciated with low wind speeds and limited precipitation [13,14] as well as, particularly in
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autumn and winter, high convection inhibitions (CIN) causing low mixing layer heights
(MLH). The vertical air exchange is thus reduced, leading to an accumulation of fine parti-
cles near ground and a high PM2.5 apportionment > 60% relative to PM10, which is generally
in contrast to PM2.5/PM10 ratios < 0.5 typically recorded in spring and summer [15–17].

To monitor the seasonal variability of the PM2.5 and PM10, 30 to 60 min mean data are
provided by the official stationary measurement networks in Europe [18]. However, highly
temporal changes < 30 min cannot be detected, and more importantly, spatial variability
of particle concentrations and their sources cannot be represented due to the immobility
of permanent network facilities. Spatiotemporal differences in personal exposure can
therefore not be represented. In contrast, mobile measurements provide the possibility
to extend the spatial coverage of stationary measurements, particularly at the pedestrian
breath level [19]. A cost-effective solution for mobile measurements is the use of so-called
low-cost monitoring systems [20]. These devices are also highly portable due to their small
weight and size and can be easily mounted on vehicles or racks carried by a person [21].
We used Alphasense OPC-N3 sensors [22], demonstrated to perform well under laboratory
conditions [23,24], to measure different types of particles at high temporal resolution of 1 s.
However, in urban outdoor environments, the accuracy of these data is adversely affected
by changes in particle composition and relative humidity (RH) [25–27].

The goal of this study was to demonstrate seasonal and spatial variability of PM2.5
concentrations in a Central European city (Mainz, Germany) using mobile low-cost in-
struments at high spatiotemporal resolution. We (i) compared these measurements with
long-term stationary data, (ii) identified PM2.5 hotspots and their source, and (iii) inves-
tigated seasonal changes in source regimes throughout the study area. We expected to
find (i) similar peak PM2.5 values in March and September, (ii) highest polluted locations
nearby streets with high traffic intensity and close to anthropogenic sources, and (iii) higher
PM2.5/PM10 ratios in spring than in late summer due to prevailing anti cyclonic weather
regimes in the colder season.

2. Materials and Methods
2.1. Study Sites and Sensors

The study was conducted on five consecutive weekdays in September (14–18 Septem-
ber 2020) and March (1–5 March 2021) in Mainz, the capital and largest city (approx.
220,000 habitants) of Rhineland-Palatinate in south-west Germany (50.0◦ N, 8.26◦ E, Figure 1).
Located in a slightly hilly landscape along the river Rhine, Mainz is an inland town and one
of the cities with the highest PM concentrations in Germany [28]. The climate is moderate
with an annual average temperature of 10.7 ◦C and precipitation of 620 mm (Koeppen
Cfb) [29,30].

The study route includes three urban quarters of different characteristics: Altstadt,
Hartenberg, and Neustadt (Figure 1). The Altstadt quarter is the old part of the town
characterized by compact low- to midrise buildings, mostly paved streets, and pedestrian
zones [31]. The urban architecture of the Hartenberg quarter, on the contrary, is a dis-
trict with open low- to midrise buildings, a small grove, and low motorized traffic. The
Neustadt quarter is characterized by mainly five-story-high buildings and narrow streets
(~10 m wide), small parks (<150 m across), and low traffic intensity in a grid-based street
layout. Large multi-lane roads with high traffic intensities surround this quarter as well as
the Altstadt.
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Figure 1. Study tracks in the Mainz Altstadt, Hartenberg, and Neustadt (black, orange, and blue 
lines, respectively), their joint start and end point at the main station (magenta), and the monitoring 
sites of the ZIMEN network at Mainz-Parcusstraße (dark red) and Mainz-Zitadelle (red) of the 
ZIMEN network, and map of Germany showing the location of Mainz (orange). 

The total length of the study route was ~15 km or ~3 h walking by foot. To mitigate 
potential changes of local concentrations during such a long time span, we divided the 
route into three circular tracks, each leading through one of the districts. Each track was 5 
km long (~1 h by foot) and shared the same starting and ending point at the Mainz train 
station (50.0017° N, 8.2595° E; Figure 1 magenta dot). The division into district tracks also 
supported multiple measurements per day. We conducted four measurement runs on 
each track, before and during the morning and afternoon rush hours starting at 6 a.m., 
07:30 a.m., 4 p.m. and 05:30 p.m., with the exception of 14 September 2020 when we only 
measured in the afternoon. For each track, one device was used comprised of a PM sensor 
Alphasense OPC-N3 [22], a ESP32 controller [32], a GPS module [33], and a microSD card 
to save measurement data (Figure 2a). The sensors were mounted at adult breath height 
(1.6 m) on the front of a wearable rack to reduce influences of the person carrying the 
device (Figure 2b). To support the detection of local emitters during post-processing, 
every run was filmed with a camera attached to the rack. 

Figure 1. Study tracks in the Mainz Altstadt, Hartenberg, and Neustadt (black, orange, and blue lines,
respectively), their joint start and end point at the main station (magenta), and the monitoring sites
of the ZIMEN network at Mainz-Parcusstraße (dark red) and Mainz-Zitadelle (red) of the ZIMEN
network, and map of Germany showing the location of Mainz (orange).

The total length of the study route was ~15 km or ~3 h walking by foot. To mitigate
potential changes of local concentrations during such a long time span, we divided the
route into three circular tracks, each leading through one of the districts. Each track was
5 km long (~1 h by foot) and shared the same starting and ending point at the Mainz train
station (50.0017◦ N, 8.2595◦ E; Figure 1 magenta dot). The division into district tracks
also supported multiple measurements per day. We conducted four measurement runs
on each track, before and during the morning and afternoon rush hours starting at 6 a.m.,
07:30 a.m., 4 p.m. and 05:30 p.m., with the exception of 14 September 2020 when we only
measured in the afternoon. For each track, one device was used comprised of a PM sensor
Alphasense OPC-N3 [22], a ESP32 controller [32], a GPS module [33], and a microSD card
to save measurement data (Figure 2a). The sensors were mounted at adult breath height
(1.6 m) on the front of a wearable rack to reduce influences of the person carrying the device
(Figure 2b). To support the detection of local emitters during post-processing, every run
was filmed with a camera attached to the rack.
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cm), and (b) picture of a person carrying the rack. 
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OPC-N3 units are suitable for a mobile measurement rack, affordable (~300 €), and per-
form well under laboratory conditions [37] considering the European EN 481 standard 
and manufacture calibration [26]. However, to further assess accuracy and address inter-
sensor variability, a stationary field calibration in an environment similar to the study area 
is recommended [19,20,38–41]. Such a calibration was conducted on the Hartenberg dis-
trict from 18–22 November 2020, 5–8 January 2021, and 20–23 February 2021. Since there 
were no reference devices that feature a comparable temporal resolution (<20 s), we ad-
justed two PM sensors to one other sensor: in our case, the sensors used in the Altstadt 
and Neustadt were adjusted to the Hartenberg sensor (Figure 3). The devices were co-
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The resulting data were then processed into 20 s arithmetic means, whereby the 10% high-
est and lowest values were truncated to mitigate the influence of short-term emissions 
(e.g., smokers). 
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Figure 2. (a) Design and components of the measurement device (dimensions: 11.5 cm × 14 cm ×
12.5 cm), and (b) picture of a person carrying the rack.

2.2. Inter-Sensor Variability

The Alphasense OPC-N3 sensors are low-cost optical particle counters following a light
scattering principle [34]. The detected particles are put into bins considering their estimated
size [35] and subsequently converted into mass concentrations [36]. The measurement
range of the Alphasense OPC-N3 for particles is 0.35 to 40 µm [22]. The handy OPC-
N3 units are suitable for a mobile measurement rack, affordable (~300 €), and perform
well under laboratory conditions [37] considering the European EN 481 standard and
manufacture calibration [26]. However, to further assess accuracy and address inter-sensor
variability, a stationary field calibration in an environment similar to the study area is
recommended [19,20,38–41]. Such a calibration was conducted on the Hartenberg district
from 18–22 November 2020, 5–8 January 2021, and 20–23 February 2021. Since there were no
reference devices that feature a comparable temporal resolution (<20 s), we adjusted two PM
sensors to one other sensor: in our case, the sensors used in the Altstadt and Neustadt
were adjusted to the Hartenberg sensor (Figure 3). The devices were co-located on the
same height side-by-side to measure PM2.5 concentrations in a 1 s interval. The resulting
data were then processed into 20 s arithmetic means, whereby the 10% highest and lowest
values were truncated to mitigate the influence of short-term emissions (e.g., smokers).

Scatterplots of data measured in the Altstadt and Neustadt compared to Hartenberg
showed that the cross-sensor accuracy was high. In addition to an explained variance
exceeding 0.98, the data were homoscedastic and low root mean square errors reached
1.13 µg/m3 and 1.14 µg/m3, respectively. However, 4th degree polynomial (instead of
linear) regression models were most suited to transform the measurements and produce
statistically reliable data.
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Figure 3. Scatter plots and polynomial regressions of the moving 20 s truncated arithmetic mean
PM2.5 adjustments of the sensors used on the Altstadt (left panel) and Neustadt tracks (right panel)
to the Hartenberg sensor including R2 coefficients and root mean square errors for the adjustment
periods from 18–22 November 2020, 5–8 January 2021, and 20–23 February 2021.

2.3. Data Post-Processing

To enable the comparison across different runs and tracks, several steps of post-
processing had to be undertaken. At first, the recorded 1 s interval PM datasets were
averaged calculating moving 20 s truncated arithmetic means, similar to the procedure
used for calibration. A spatial synchronization of the data of the individual tracks was
applied to adjust slight variations in run duration and minor inaccuracies of the GPS data.
This was done by manually setting an ideal route for every sub-track and converting the
data into points with a distance of 50 cm to each other. Each point was allocated to its
appropriate data by calculating an average of the 10 closest original datapoints using
an inverse distance weighting method [42]. The data of each track and run were then
converted considering the polynomial regression equation obtained from the calibration
trials. To reduce the effect of particle hygroscopy, a humidity correction for data recorded
at RH > 60% according to Crilley et al. [26] was applied. The correction formula is based on
the κ-Köhler theory, with κ = 0.33 as a composition of hygroscopic particles in the ambient
air and a dry particle density of 1.65 g/cm3 [39]. Ambient RH measurements were taken
from the long-term station Mainz-Zitadelle of the ZIMEN network. The processed data
were then analyzed using descriptive statistics, i.e., arithmetic mean, median, and standard
deviation (SD). In order to validate our absolute PM2.5 measurements for PM2.5 hotspot
identification, a comparison of the mean PM2.5 values of each track and run in September
and March against the regular long-term station data from Mainz-Parcusstraße, which is
characterized by urban traffic, and Mainz Zitadelle, which resembles the urban background,
was performed. These two measurement stations are part of the ZIMEN network, which
carries out measurements with Thermo Fisher SHARP 5030 instruments [43] to monitor
PM2.5 and PM10 on behalf of the state.

For the detection of highly polluted spots, the following steps were conducted. To
counteract time-related fine particulate gradients, the data of each run were linearly de-
trended. Subsequently, the measurements of the simultaneously conducted runs in each
district were combined and highly polluted locations (spots with 10% highest PM2.5 values)
were identified: we determined highly polluted locations, for each period and season, by
overlaying the extreme data of the respective runs and looking for matches. A match was
recorded if the same location within a radius of 20 m indicated a pollution hot spot (i.e., 10%
highest values) in several runs. After identifying highly polluted locations, we calculated
PM2.5/PM10 ratios for the September and March data to evaluate emission sources.
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3. Results and Discussion
3.1. Absolute PM2.5 Concentrations in September and March

In September, the uncorrected mean PM2.5 concentrations were in line with the ZI-
MEN measurements and showed a diurnal pattern in PM2.5 characterized by 50 to 220%
higher concentrations in the morning compared to the afternoon runs. This pattern was
recorded during the first three days of the September campaign and followed by declining
concentrations toward the end of the week (Figure 4, for median PM10 concentrations, see
Figure S4).
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Figure 4. Mean PM2.5 concentrations in the Altstadt, Hartenberg, Neustadt (black, blue, and or-
ange colors, respectively), and ZIMEN data from the Mainz-Parcusstraße and Mainz-Zitadelle
(dark red and red colors, respectively) during the study periods in (a) September and (b) March
with corresponding boxplots and arithmetic means (yellow dots). The unfilled dots symbolize the
humidity-corrected PM2.5 measurements, and the filled dots symbolize PM2.5 concentrations without
humidity correction.

This change in PM2.5 variability could be associated to changes in the weather regime:
the first three days were characterized by warm late summer weather conditions consisting
of high daily maximum air temperatures (TA) > 30 ◦C, moderate mean RH < 57%, and low
maximum windspeeds < 1.0 m/s mainly from southeast directions (0; Figure S1). These
stable conditions were also expressed by a low mean MLH < 200 m and high mean CIN with
daily amplitudes up to 340 J/kg, which provided meteorologically favorable conditions for
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increased PM concentrations [14]. However, our measurements mainly underestimated the
PM2.5 concentrations of the ZIMEN network in this period, particularly during the morning
runs of 15 September 2020 and 16 September 2020 and after consideration of the humidity
correction. These differences exceeded 23 µg/m3 in absolute values equal to 700% (both on
15 September 2020, first run). Right after the 4th run on 16 September 2020, the weather
changed. Air pressure increased to 1015 hPa accompanied by rising windspeeds (max:
<1.7 m/s), higher mean MLH value, lower CIN (69 J/kg), lower TA, and mean RH < 60%
during last six runs of the September campaign which is why no humidity correction was
applied for this period (Figure S1). During this time, the differences between our and the
ZIMEN data decreased. Whereas our measurements showed still slightly higher PM2.5
concentrations on the 17th of September, differences did not exceed 3.0 µg/m3 thereafter.

In March, the PM2.5 concentrations were higher than in September. The differences
between ZIMEN and our uncorrected measurements were moderate (<5.2 µg/m3) during
the first four runs. Thereafter, when stable weather conditions set in (Table 1, Figure S2) and
PM2.5 concentrations increased, a substantially larger underestimation up to 25.1 µg/m3 of
the ZIMEN was recorded. An exception was run one on 3 March 2021 on the Hartenberg,
where we measured >12 µg/m3 higher concentrations on average, though this seemed to
be a single outlier that we could not explain. After 3 March 2021, the PM2.5 concentrations
decreased due to a change in weather, upcoming north wind (max. 3.2 m/s), and a short-
term shower, followed by decreasing of TA and RH. The differences between the ZIMEN
measurements and those conducted by us were again small.

Table 1. Meteorological conditions during the study measurement periods in September and March
including mean air temperature (TA) (◦C), mean relative humidity (RH) (%), precipitation sum (mm),
atmospheric pressure (hPA), wind speed (m/s), wind direction (◦), mean convective inhibition (CIN)
(J/kg), and mean mixing layer height (MLH) (m). Adapted with permission from Refs. [18,44] 2021,
Landesamt für Umwelt Rheinland-Pfalz.

Date 14.09. 15.09. 16.09. 17.09. 18.09. 01.03. 02.03. 03.03. 04.03. 05.03.
TA (◦C) 23.0 23.3 23.8 19.5 18.8 7.7 9.2 8.2 9.6 5.8
RH (%) 53.6 56.6 57.1 51.2 46 66.8 62.7 71.5 71.7 59.4

Precipitation (mm) 0.3 0 0.1 1.1 1.9 0 0 0 9.5 0
Atmospheric pressure

(hPA) 1013 1009 1007 1013 1012 1021 1020 1017 1008 1014

Wind direction (◦) 56 63 147 105 100 143 122 148 225 166
Wind speed (m/s) 0.2 0.1 0.4 0.6 0.6 0.5 0.3 0.2 0.6 1.1

CIN (J/kg) 177 171 171 60 85 163 148 219 110 27
MLH (m) 170 165 115 312 249 135 163 102 226 455

In both study periods, the differences in absolute PM2.5 between our runs and the
stationary data were large and could not be explained by spatial variability. Our find-
ings confirm the results of, e.g., Li et al. [45] and Sousan et al. [37], who identified this
underestimation of OPC-N3 sensors compared to reference instruments. A stronger un-
derestimation of the humidity-corrected PM2.5 concentration could be explained by the
fact that any correction lowers the values [39]. Furthermore, the missing diurnal pattern
during the first 3–4 days in September could be related to higher RH in the afternoon
causing larger corrections. In March, however, the uncorrected measurements still showed
diurnal patterns, whereas both the humidity-corrected and ZIMEN data did not. The
humidity correction looked more suitable in the spring campaign, possibly because the
prevailing higher RH resulted in corrections and hence stronger underestimations. The
overall substantial underestimations and incomprehensible differences between mobile
and stationary data led to the conclusion that our PM sensors cannot be used to assess
absolute PM2.5 concentrations. For this reason, we used relative instead of absolute PM2.5
data to evaluate highly polluted areas.
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3.2. Highly Polluted Places and Sources

The identification of highly polluted sites, i.e., sites with the highest 10% of PM2.5
concentrations throughout the entire study area, was conducted using 35 of 38 runs. Two
runs were excluded due to sensor malfunctions (run two on 1 March 2021 and run two
on 3 March 2021) and one run was omitted because of onsetting rain causing strongly
lowered PM, which did not allow reasonable spatial comparisons of that run (run three on
4 March 2021).

Our result showed that no location was consistently identified as a highly polluted
area throughout the entire measurement period (Figure 5). This result was unexpected
as our measurements took place along roads and large intersections with high vehicle
traffic, reported to be main source of fine particle concentrations in urban areas [46]. On the
contrary, locations with high levels of PM2.5 could be identified on all three tracks. While
all PM2.5 hot spots were recorded in the Neustadt district during the September morning
runs, the afternoon runs also included highly polluted places in the Altstadt. For the early
morning runs in March, hot spots were solely detected in the Hartenberg, and in later runs,
the highly polluted places were recorded on all tracks yet focused in the Hartenberg and
Neustadt districts. People were thus exposed to high particle concentrations at varying
places in different urban settings depending on the daytime and season.
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However, there were locations where pedestrians were exposed more frequently. In
>50% of the September runs, we identified 21 different spots showing recurring high
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PM2.5 concentrations throughout all tracks (Figure 6, left panel). The larger number of
hotspots in September could be assigned to the low absolute PM2.5 concentrations and
minor differences among districts (Figure 4). At low particle concentrations, local emissions
have a large influence on absolute PM2.5 peaks, and the mitigated track differences further
the spread of hotspots. In March, there were at least seven highly polluted locations, mostly
recorded on the overall more polluted Hartenberg track. However, when increasing the
threshold to define highly polluted areas to >60% of the runs, the number of hot spots
declined massively to only five locations (Figure 6, right panel; Figure S3). The remaining
September hotspots were in a Neustadt park and the Altstadt pedestrian zone, whereas
the two remaining March hotspots were located near a major housing construction site in
Hartenberg and a traffic-loaded bridge near the train station.
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Figure 6. Locations with 10% highest PM2.5 concentrations in >60% of all runs in September (left
panel) and March (right panel). Colors refer to parks (green), pedestrian zone (blue and cyan),
construction site (magenta), and a bridge (violet).

The March hotspots could clearly be attributed to anthropogenic sources: the origin of
the particles at the bridge could be assigned to vehicles, as there was a high intensity of
traffic on the multi-lane road crossing the bridge; the emission sources of the construction
site was seemingly related to building processes and frequent construction vehicles [7,47].
These conclusions were supported by low apportionment of PM2.5 in PM10 at these locations
(Figure 7). While the high PM2.5/PM10 ratio at the bridge near the main station (0.73)
indicated the particle source to originate predominantly from anthropogenic emissions due
to combustion processes of vehicles, the lower ratio (0.63) and high variability (interquartile
range (IQR) = 0.13) at the construction sites pointed to a mixture of resuspended dust and
particles from combustion processes.
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The three September hotspots were particularly surprising, as there was no motorized
traffic present at the time. This is in contrast to our hypothesis that the hotspots were
related to heavy traffic streets as the main driver of high PM2.5 concentrations in urban
areas [46]. The high values in the pedestrian zones could nevertheless be of anthropogenic
origin, emitted by the exhaust systems of the restaurant kitchens blowing fine particles
during deep-frying and roasting onto the streets [48]. Particles were likely additionally
emitted in the outdoor areas of the restaurants (Figure S3, panel 3) due to smoking activities
as reported by Birmili et al. [49]. High PM2.5/PM10 ratios >0.6 at these locations support the
conclusion that anthropogenic sources were the main emitters, as does the fact that these
sites were identified as PM2.5 hotspots in the afternoon runs, i.e., at times when restaurants
were highly frequented.

The particle sources in the park could not be attributed to combustion processes as in
the other hotspots. The much lower mean PM2.5/PM10 ratio = 0.24 and small IQR = 0.07
pointed to a homogenous particle composition during September at this location (Figure 7).
These values were either related to fugitive dust [11], i.e., impervious areas and footpaths
containing loose top material, or to re-suspended road dust from the multi-lane road right
next to the park. The spatial distribution of the PM2.5/PM10 ratios for September indicated
that horizontal transport of fine particles from the close road was unlikely (Figure 8). Ratios
<0.5 are rather indicative of locations with ongoing road and construction works and
of parks with loose gravel on the walkways. Since there was no roadwork near to the
park during the measurement campaign, whirled up dust from graveled and unpaved
walkways was the most plausible local emissions. These findings corroborate with Paas and
Schneider [50] who attributed higher mean concentrations in a green area to resuspended
dried-out grass and unsurfaced footpath particles.
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The comparison of highly polluted locations in September and March showed that
the hotspots varied within the study area and that the underlying particle source changed.
The data were additionally characterized by a substantial increase in PM2.5/PM10 ratios
from 0.56 to 0.76 between autumn and spring, averaged over the study area (Figure 8). This
seasonal change is in line with Speranza et al. [17] reporting ratios of <0.5 during warmer
seasons (spring–summer) and ratio of >0.5 during colder seasons (autumn–winter). In
our case, the increase in PM2.5 ratio was likely additionally affected by a pronounced cool
thermal inversion (Table 1; Figure S2). These conditions constrained the vertical mixing of
air, which led to an increase in fine particle concentrations at ground level. The prevailing
low wind speeds subsequently amplified dry deposition of coarse particles, which in turn
increased the PM2.5 apportionment in PM10 [51–53].
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4. Conclusions

Using mobile low-cost devices containing Alphasense OPC-N3 sensors, small-scale
PM2.5 hotspots along a 15 km transect in an urban area were identified. Three sensors
showed a high agreement among each other but severely underestimated the measured
PM2.5 concentrations of the ZIMEN network, particularly after applying a widely used
humidity correction [39]. Absolute PM2.5 values were not considered, but additional
calibration against high-resolution reference instruments could possibly improve the data
accuracy of OPC-N3 sensors.

The identification of (relatively) heavily polluted locations revealed persisting PM2.5
hotspots in >60% of all runs, though the locations varied between the September and March
study periods. The March hot spots were most likely triggered by local anthropogenic
emissions including traffic emissions and construction work. This conclusion was sup-
ported by PM2.5/PM10 ratios >0.6 indicating combustion processes as the main particle
source. The September hotspots, however, were located in areas dominated by pedestrians,
and the PM sources were attributed to restaurant cooking exhaust air and outdoor seating
activities. Exceptionally low PM2.5/PM10 ratios of 0.24 recorded in a park pointed to
particles originating from locally emitted natural dust from unpaved footpaths, bare soils,
and gravel surfaces. The PM2.5/PM10 ratios also increased from September to March as
additional heating due to cooler temperatures and stable weather conditions prevailed
during the spring campaign. The composition of sources can be further differentiated by
analyzing the chemical composition of particles, which we recommend for further studies.
The work detailed here revealed the capability of low-cost sensors to identify small-scale
PM2.5 hotspots and sources. While the accuracy of absolute PM2.5 concentrations was
insufficient, highly resolved spatiotemporal measurements may complement the stationary
data and support the identification of highly polluted areas in the urban environment.
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//www.mdpi.com/article/10.3390/atmos13050694/s1, Figure S1: weather conditions during Septem-
ber measurement period; Figure S2: weather conditions during March measurement period; Figure S3:
Pictures of the high polluted areas. Figure S4: Mean PM10 concentrations in the Altstadt, Hartenberg,
Neustadt and ZIMEN data.
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