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still important to narrow uncertainties of future sce-
narios (Sherwood et al. 2020), yet our knowledge
quickly fades over the most recent period of pre-
instrumental climate variability, the Common Era
(CE) spanning the past 2000 years.

Focusing on the first half of the Common Era (CE),
several regional- and continental-scale studies re -
vealed cooler conditions during the 6th−7th centuries,
the so-called Late Antique Little Ice Age (LALIA;
Büntgen et al. 2016), framed by warmer conditions
during late Roman and high Medieval times (Moberg
et al. 2005, Ljungqvist 2010, Christiansen & Ljung -
qvist 2012, Esper et al. 2012, Luterbacher et al. 2016,
Büntgen et al. 2020). This broader picture was recently
challenged by a global temperature reconstruction
showing a steady mean fluctuating be tween −0.3 and
−0.1°C (relative to the 1961−1990 mean), accompa-
nied by large uncertainties ranging from −0.6 to
+0.2°C (Fig. 1a). The reconstruction does not show
substantial interannual to decadal scale variance, nor
any sign of long-term trends  supporting notions of a
Roman Warm Period, LALIA, or Medieval Warm
Period (PAGES 2k Consortium 2019).

© Inter-Research 2021 · www.int-res.com

Ever since the Intergovernmental Panel on Climate
Change (IPCC) won the Nobel Peace Prize in 2007,
the release of new reports every 6−8 yr generates an
international media echo and informs policy makers
around the world. Beyond their public impact, re -
ports by Working Group 1 on ‘The Physical Science
Basis’ are unique documents that summarize the state
of climate science at a given point in time, and the
chapter on paleoclimatic findings has become a piv-
otal benchmark within and beyond academia (Mas-
son-Delmotte et al. 2013). This tradition will now be
resigned, as the IPCC decided to not include a chap-
ter on paleoclimatic findings in its next Working
Group 1 report to be released in 2021, but to add
information on past climate variability to several sub-
sections. Even readers from outside the climate sci-
ence community might wonder why this is the case.
Are paleoclimatic findings less relevant to an under-
standing of the current climate dynamics, or have the
fundamental paleoclimatic questions been answered
sufficiently so that previous reports serve the pur-
pose of informing the public? None of this is applica-
ble. Information on past natural climate variability is
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reconstructions. Highlighting such differences and emphasizing paleoclimatic findings is crucial
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records are needed to accurately reconstruct first millennium CE temperature variability and
value regional studies producing such data.
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The new temperature history is the result of an
unprecedented group effort in which dozens of pale-
oclimatologists compiled data for each continent,
which were then combined in a global mean for the
CE. This final product combines information from
257 proxies using a range of methods and including
annually-resolved tree-ring records, but also lower-
resolution data from ice cores, lake and marine sedi-
ments, and other archives. The number of proxies as
well as the quality of these series declines back in
time (Esper et al. 2016), so that only a few records are
available during the early centuries of the CE. All of
these issues, i.e. the limited resolution, reduced repli-
cation, and increased dating uncertainty, affect our
ability to accurately assess past temperatures and
cause a blurring of the climate record back in time
(Christiansen & Ljungqvist 2017).

The blurring effects become visible when the
global temperature curve is compared with a conti-
nental-scale analysis (Büntgen et al. 2020), in which

updated versions of the longest and best-replicated
tree-ring chronologies from 7 locations in the North-
ern Hemisphere are combined (Fig. 1b). The latter
shows more temperature variability as it represents
much less space, i.e. parts of the Northern Hemi-
sphere extratropics versus global land and ocean sur-
faces. Yet the regional data also demonstrate how
large volcanic eruptions in 536 and the 540s CE
caused a severe, multi-decadal temperature drop
>1°C in large parts of the Northern Hemisphere,
which can be simulated with climate models and cor-
roborated by historical sources (Toohey et al. 2016).
This climate anomaly marks the start of the LALIA
and was accompanied by substantial socioeconomic
transformations across Eurasia (Büntgen et al. 2016).
The mid-6th century cooling is also depicted in the
global estimate (the blue curve in Fig. 1b), but this
deviation was not exceptional in the context of the
smoothed variability throughout the first millen-
nium CE.
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Fig. 1. Global- and continental-scale temperature reconstructions of the first half of the Common Era. (a) State-of-the-art
smoothed global temperature reconstruction derived from high- and low-resolution proxies (blue curve) shown together with
its 95% uncertainty range derived from sub-sampling and averaging the proxy records multiple times (yellow curves). The
reconstruction integrates 257 proxies that were carefully selected from a pool of 692 temperature-sensitive records based on
their fit with annual instrumental temperatures within 2000 km search radii (PAGES 2k Consortium 2017). Only ~10−20% of
the paleo records extend back into the first millennium CE. (b) Annually resolved temperature reconstruction derived from 1
North American, 2 European, and 4 Asian tree-ring chronologies (gray curve). The bold black curve is a 30 yr filter, the blue curve
is the global record from panel (a), and the symbol indicates the timing of major volcanic eruptions in 536 and the 540s CE. As
with the global curve, only a fraction of tree-ring data from the 20th century calibration period extends back to the middle of 

the first millennium CE (~10%), thereby increasing the uncertainty estimates back in time (Büntgen et al. 2020)
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At this point, it remains unclear to which degree
these differences are caused by representing differ-
ent spatial domains and/or including differently re -
solved and dated proxies. The widespread assumption
that such fundamental questions on pre- industrial
climate variability can be solved by em ploying cli-
mate model simulations is not supported, as such
assessments rely on climate forcing estimates (solar
variability, volcanic eruptions, land-use changes),
again derived from proxy records. We therefore need
to develop more high-resolution proxy records to
provide a framework of natural climate variability at
policy-relevant timescales and to support efforts of
improving future climate predictions:

(1) There are only a few locations that provide reli-
able temperature estimates for the entire CE. Revisit-
ing these, measuring new proxies from these ‘old’
sites, and updating existing records (towards pres-
ent) is a research priority.

(2) Paleoclimatologists need to search for new loca-
tions from which additional, calibrated and verified,
proxy records can be developed. These efforts
should include both high- and low-resolution ar -
chives, proxies that are sensitive to hydroclimate
variability, and records from lower latitudes and the
Southern Hemisphere.

(3) International research initiatives extending
beyond meeting support are needed to enable the
development of proxy networks and improve paleo-
climate data availability over the CE and beyond.

Whether the first millennium CE temperature his-
tory was invariable or characterized by large and per-
sistent temperature changes is not a purely academic
question. Yet the circumstance that the next IPCC re-
port will no longer include a paleoclimate chapter
should not mistakenly be interpreted as evidence that
natural climate variability is understood. The opposite
is actually the case. We are in the dark already before
1400 CE, have a rather limited idea of the magnitude
(and forcing) of pre-industrial warm periods, and know
much less about the Southern Hemisphere, not to
mention precipitation and other climate elements.
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