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Abstract Spatial covariance in the simulated temperature evolution over the past millennium has been
reported to exceed that of multiproxy-based reconstructions. Here we use tree ring-based temperature
reconstructions and state-of-the-art climate model simulations to assess temporal changes in Northern
Hemisphere intercontinental temperature covariance during the last 1000 years. Tree ring-only approaches
reveal stronger agreement with model simulations compared to multiproxy networks. Although simulated
temperatures exhibit a substantial spread among individual models, intercontinental temperature coherency
is mainly driven by the cooling of large volcanic eruptions in 1257, 1452, 1600, and 1815 Common Era. The
coherence of these synchronizing events appears to be elevated in several climate simulations relative to
their own unforced covariance baselines and in comparison to the proxy reconstructions. This suggests that
some models likely overestimate the amplitude of abrupt summer cooling in response to volcanic eruptions,
particularly at larger spatial scales.

1. Introduction

Knowledge about past climate variability is important for placing recent warming in a historical context
(Atwood et al., 2016; Christiansen & Ljungqvist, 2017; Frank et al., 2010; Masson-Delmotte et al., 2013;
Smerdon & Pollack, 2016; Snyder, 2010). Proxy-based climate reconstructions and model simulations are
sources for quantifying past climate variability, and both provide insights into Earth system responses to
external forcing (solar, volcanic, and orbital) and changes in atmospheric composition (Büntgen et al.,
2016; Esper, Büntgen, et al., 2013; Hegerl et al., 2006; Ljungqvist et al., 2016; Masson-Delmotte et al., 2013;
Schneider et al., 2015; Schurer et al., 2013, 2014). Investigations specifically focused on the past several
millennia provide important information because mean climate conditions are close to those of the present
day, providing an ideal test bed for assessing the impact of natural and anthropogenic forcings on climate
variability and change (Schmidt, 2010).

One important area of investigation is the comparison between proxy evidence and climate model simula-
tions over the last several millennia. These comparisons are important as a means of evaluating the perfor-
mance of climate models in terms of their simulated internal variability and responses to radiative forcings
(e.g., Braconnot et al., 2012; Harrison et al., 2016; PAGES 2k-PMIP3 group, 2015; Schmidt, 2010; Schmidt
et al., 2014; Smerdon et al., 2017). Importantly, paleoclimate evaluations of models that are also used to make
projections based on possible future emission pathways, and proxy-model comparisons have direct quanti-
tative relevance for risk assessments. Previous paleoclimate proxy-model comparisons have demonstrated,
inter alia, that models can underestimate internal climate variability (e.g., Valdes, 2011), may incorrectly repre-
sent external radiative perturbations (e.g., Anchukaitis et al., 2010; Braconnot et al., 2012; Esper, Schneider,
et al., 2013; Stoffel et al., 2015), and may represent the dynamics and character of hydroclimate variability
with varying degrees of success (e.g., Ault et al., 2014; Coats, Cook, et al., 2015; Coats, Smerdon, Cook,
et al., 2015; Coats, Smerdon, Seager, et al., 2015; Landrum et al., 2013 ; Ljungqvist et al., 2016).

Recent work on the consistency between model simulations and proxy-based reconstructions revealed
substantially higher temperature covariance across continents in the simulations, compared to the

HARTL-MEIER ET AL. LAST-MILLENNIUM TEMPERATURE COVARIANCE 1

PUBLICATIONS
Geophysical Research Letters

RESEARCH LETTER
10.1002/2017GL073239

Key Points:
• Tree ring-based summer temperature
reconstructions show higher
intercontinental covariance than
multiproxy approaches

• Volcanic eruptions cause periods of
high intercontinental summer
temperature covariance

• Model simulations tend to
overestimate the amplitude of
volcanic-induced summer cooling

Supporting Information:
• Supporting Information S1

Correspondence to:
C. T. M. Hartl-Meier,
c.hartl-meier@geo.uni-mainz.de

Citation:
Hartl-Meier, C. T. M., Büntgen, U.,
Smerdon, J. E., Zorita, E., Krusic, P. J.,
Ljungqvist, F. C., Schneider, L., & Esper J.
(2017). Temperature covariance in tree
ring reconstructions and model simula-
tions over the past millennium.
Geophysical Research Letter, 44. https://
doi.org/10.1002/2017GL073239

Received 24 FEB 2017
Accepted 1 SEP 2017
Accepted article online 7 SEP 2017

©2017. American Geophysical Union.
All Rights Reserved.

http://orcid.org/0000-0001-9492-4674
http://orcid.org/0000-0002-3821-0818
http://orcid.org/0000-0001-6276-0249
http://orcid.org/0000-0002-7264-5743
http://orcid.org/0000-0001-5358-9697
http://orcid.org/0000-0003-0220-3947
http://orcid.org/0000-0002-8208-7300
http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2017GL073239
http://dx.doi.org/10.1002/2017GL073239
http://dx.doi.org/10.1002/2017GL073239
http://dx.doi.org/10.1002/2017GL073239
http://dx.doi.org/10.1002/2017GL073239
mailto:c.hartl-meier@geo.uni-mainz.de
https://doi.org/10.1002/2017GL073239
https://doi.org/10.1002/2017GL073239


reconstructions (PAGES 2k-PMIP3 group, 2015). This finding calls into question estimates of spatial covar-
iance in surface temperature fields estimated from either of these approaches: temperature covariance is
either too high in the simulations or it is too low in proxy-based reconstructions. The PAGES 2k-PMIP3
group (2015) used continental scale temperature reconstructions derived from multiproxy compilations
produced by the PAGES 2k Consortium (2013) (hereafter termed PAGES2k reconstructions). These proxy
records include historical documentary data, ice cores, corals, marine and lake sediments, pollen, tree
rings, and speleothems. Lower covariance of reconstructed temperatures might be due to different
proxy-specific uncertainties inherent in the data, while model simulations contain no such noise and
therefore likely higher spatial covariance. Some models, on the other hand, may overestimate forcing
responses that could in principal inflate the degree of spatial covariance in model simulations (Schurer
et al., 2013; Stoffel et al., 2015). Currently, the level of spatial covariance in surface temperatures and
its representation in model simulations and proxy-based reconstructions is uncertain, particularly as
assessed over multiple decades or centuries. Assessing this discrepancy using reconstructions derived
from only one proxy (tree rings) is one means of helping to understand the mismatch. Furthermore,
we assume that periods of high temperature covariance are associated with distinct radiative forcings
(Anchukaitis et al., 2017) in modeled as well as reconstructed temperature estimates, and therefore,
temporally resolved assessments of spatial covariance can contribute to physically relevant assessments
of models and proxy-based reconstructions.

Large volcanic eruptions are the strongest natural forcing of temperature variability over the past millennium
at multiyear timescales (Colose et al., 2016; Esper, Büntgen, et al., 2013; Robock, 2000; Sigl et al., 2015). The
representation of volcanic-induced cooling in proxy-based reconstructions and model simulations is there-
fore critical, and the magnitude of the response as represented in proxies and models has been debated
(Anchukaitis et al., 2012; Esper, Schneider, et al., 2013; Mann et al., 2012, 2013; Stoffel et al., 2015; Wilson
et al., 2016). It has also been demonstrated that models overestimate postvolcanic cooling during the instru-
mental period (Brohan et al., 2012), but these estimates are based on the limited number of eruptions occur-
ring after the establishment of large-scale instrumental networks. With respect to the very large eruptions
(e.g., 1257, 1452, 1600, and 1815) there are still substantial uncertainties about the subsequent temporal
and spatial response of the climate system as represented in model simulations and proxy-based reconstruc-
tions (Atwood et al., 2016; Fernández-Donado et al., 2013; Ljungqvist et al., 2016; Marotzke & Forster, 2015;
Stoffel et al., 2015; Wilson et al., 2016).

In this study, we assess the covariance of reconstructed and modeled summer temperature variability over
Northern Hemisphere continents by comparing tree ring-based temperature reconstructions with
state-of-the-art model simulations over the past millennium. We evaluate the significance of climatic forcings
on the intercontinental summer temperature covariance by matching proxy and model data over the past
millennium. We hypothesize that volcanic forcing imposes higher spatial covariance on both the proxy
reconstructions and model simulations while more typical internal variability reduces covariance below a
detectable threshold.

2. Data and Methods
2.1. Temperature Reconstructions

We use all 36 tree ring-based Northern Hemisphere temperature reconstructions from Esper et al. (2016) that
extend back to at least A.D. 1000 (Figure 1a). Regional subdivision of the reconstructions were performed
according to the PAGES2k domains (PAGES 2k Consortium, 2013) assigning 9 records to Europe, 11 to Asia,
7 to North America, and 9 to the Arctic (Table S1). Esper et al. (2016) provides a comprehensive description
of the underlying tree ring data (updates at www.blogs.uni-mainz.de/fb09climatology/reconranking). In this
study, we use only the published temperature reconstructions from the original articles accepting the fact
that the methods used by the original authors for transferring tree ring chronologies into temperature units
vary substantially, resulting in reconstructions with different amplitudes of variability (Figure S1) (see, e.g.,
Christiansen & Ljungqvist, 2017; Esper et al., 2005; Tingley et al., 2012; von Storch et al., 2004). Despite these
differences, and despite the temperature targets (e.g., maximum or mean temperatures, and seasonality of
the proxy signal) the simple arithmetic continental means correlate quite well over the past millennium
(see below for details, Figure 1b). Consequently, we refrain from any filtering, smoothing, or
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standardization of the data and instead center all reconstructions such that they represent temperature
anomalies relative to the 1961–1990 reference period.

We are aware that the “Arctic,” as used here, does not represent a continent but use “continental scale”
according to the PAGES2k terminology (PAGES 2k Consortium, 2013). We also concede that the simple arith-
metic mean time series are not truly “continental scale temperature reconstructions.” Nevertheless, we apply
a parsimonious data treatment and herein use the terminology “continental (scale) reconstructions” despite
the fact that the records are not fully integrating temperature patterns at continental scales but have parti-
cular clustered geographic distributions within a continent (Figure 1).

We also use the PAGES 2k Consortium (2013) multiproxy temperature reconstructions for Northern
Hemisphere continents for comparison, although we exclude the North American reconstructions due to
their low temporal resolution (30 years). It is also noted that the PAGES2k Europe and Arctic records share
reconstructions from central and northern Scandinavia (PAGES 2k Consortium, 2013) and that we used the
updated Arctic reconstruction (McKay & Kaufman, 2014).

2.2. Model Simulations and Instrumental Data

We use five last-millennium (850–1849 Common Era (C.E.)) simulations from phase 3 of the Paleoclimate
Modeling Intercomparison Project (PMIP3) (Schmidt et al., 2011) appended to the first ensemble member
of the historical simulations (1850–2005 C.E.) from phase 5 of the Coupled Model Intercomparison Project
(CMIP5) (Taylor et al., 2012) (see Table S2 for details). All model output is interpolated to a common 5° × 5°
latitude-longitude grid, allowing a straightforward comparison between the different model fields. For
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Figure 1. Continental scale tree ring-based temperature reconstructions. (a) Location of the 36 millennium length tree ring reconstructions used in this study (tri-
angles) including 9 records in Europe (green), 11 in Asia (blue), 7 in North America (red), and 9 in the Arctic region (dark grey). The corresponding simulation grid
cells are filled with matching colors. (b) The arithmetic mean curves computed for each continent from the subset reconstructions, expressed as temperature
anomalies with respect to 1961–1990 for Europe (green), Asia (blue), North America (red), and the Arctic (dark grey).
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instrumental data, we use HadCRUT4 (Morice et al., 2012) infilled by kriging (Cowtan & Way, 2014) to avoid
data gaps.

Because the tree ring temperature reconstructions are unevenly distributed over the continents, we used the
36 grids containing the proxy locations to calculate means from the simulations and instrumental data
(Figure 1a and Table S1). This procedure ensures consistent replication and spatial representation of the
continental means from the reconstructed, simulated, and instrumental temperature data sets. To evaluate
potential sampling biases, however, additional calculations were performed with representative continental
means, i.e., including all grid points on the continents for instrumental and simulated data (see Table S3).
Because 28 out of 36 tree ring reconstructions represent summer temperatures (Esper et al., 2016), we derive
June–August (JJA) mean temperatures for themodeled and instrumental data, all of which are represented as
anomalies relative to the 1961–1990 reference period.

2.3. Covariance Analysis

Intercontinental covariance of the observed, reconstructed, and simulated temperatures was quantified
using Pearson’s correlation coefficients calculated over the A.D. 1000–2000 and 1850–2000 intervals.
Intracontinental covariance was computed as the average correlation of point-to-point time series within a
continent. The association among continental means was additionally assessed by calculating the
between-series correlations over 31 year moving windows. For comparison, the same calculations were
performed over the last 500 years of preindustrial control simulations for each of the employed
PMIP3/CMIP5 models, with the understanding that the upper 95% confidence limit of the overall control
simulation covariances is considered the baseline for distinguishing unforced background covariance of
the multimodel mean. Setting a baseline for the expected covariance based on model control runs, i.e.,
constant forcing conditions, helps to detect extraordinary or large-scale radiative forcing-induced covariance
shifts. Temporal changes in variances of simulated and reconstructed temperature records were calculated
using 31 year running standard deviations. All calculations were performed using unfiltered temperature
anomalies, i.e., including the full spectrum of interannual variability.

3. Results and Discussion
3.1. Spatial Covariance

In the reconstructions and in some simulations, summer temperatures are more heterogeneous at regional
scales relative to hemispheric scales (Figure 2). This is evident in the smaller intracontinental correlations
between temperature estimates, i.e., the average correlation of temperature variability within a continent,
relative to the correlation among continental means. The intracontinental correlations are lowest among
the tree ring reconstructions; from 0.17 within Europe and Asia to 0.27 within North America. Within the simu-
lations, the intracontinental correlations are substantially higher, reaching 0.53 in CCSM (Europe) and 0.48 in
IPSL (Europe). In both the tree-ring and simulation data, the intracontinental correlations are generally
consistently lower in the Arctic and Asian continents relative to Europe and North America. This is likely
due to the more widely distributed locations of Arctic and Asian tree ring sites (Figure 1a).

As noted above, the correlations between the continental means are higher than the intracontinental corre-
lations (Figure 2 and Table S4). This is true for both proxy and simulation time series, although differences are
less pronounced in the models, which is likely the result of the additional site-specific noise in the proxy esti-
mates; i.e., regional averaging is more relevant for filtering out random noise in the proxy series. The highest
intercontinental covariance is found in the CCSM simulation, followed by IPSL, reaching r ≥ 0.41. The MPI
model also shows high intercontinental correlations (r ≥ 0.36), except in the Arctic. The BCC and GISS simula-
tions display much reduced, and in some cases insignificant, correlations particularly between North America,
Asia, and the Arctic (�0.03 to 0.28). In comparison, the PAGES 2k-PMIP3 group (2015) report correlations of
modeled temperatures between Europe, Asia, and the Arctic all at>0.7, but that study used 23 year low-pass
filtered data that substantially impacts these calculations. The filtering may also explain the much lower
covariance of the PAGES2k reconstructions compared to the simulations identified in the earlier study.

The intercontinental covariance between tree ring reconstructions is in the center of the spread of the model
simulations. Without smoothing, however, the PAGES2k temperature reconstructions also display lower
correlations than the tree ring reconstructions (note the asterisks in Figure 2) indicating that the single-
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proxy records from tree rings contain more common variance among the continents than the multiproxy
reconstructions. Differences in reconstruction methods and proxy characteristics also likely contribute to
lower correlation coefficients (PAGES 2k-PMIP3 group, 2015). The multiproxy approach thus has
advantages described elsewhere (e.g., Mann, 2002), but it also seems to include biases from the different
proxies in ways that are difficult to assess. For instance, proxy-specific biases and uncertainties are
combined in a multiproxy reconstruction by mixing varying seasonal signals and different spatiotemporal
resolutions, all of which are regressed onto the same target data using an array of reconstruction methods
(Christiansen, 2011; Smerdon et al., 2016, 2011; Tingley et al., 2012; Wilson et al., 2016).

Over the 1850–2000 period (Figure 2, right), the intercontinental correlations are still significant and higher
than those calculated over the millennium, even though the degrees of freedom are significantly reduced
over the much shorter instrumental period. The correlations are nevertheless expected to be enhanced by
the centennial scale warming trend in both the tree ring reconstructions and model simulations
(Figures 1b and S1). In contrast, the covariance of the PAGES2k temperature reconstructions between
Europe and Asia decrease remarkably (note the asterisks in Figure 2), but the overlap of the time series is also
shorter, ending in 1989. The PAGES2k data also yield higher correlations between the Europe and Arctic
records over the 1850–2000 period, which is likely due to the data overlap in the reconstructions from
northern Scandinavia. The GISS model and HadCRUT4 instrumental data display the lowest covariance, with
the instrumental data returning the lowest correlations when including time series from Asia. The latter might
be due to data gaps in late nineteenth and early twentieth century data as well as the methods used to infill
data. Sparse early instrumental coverage is typical for vast areas in Asia (Morice et al., 2012), and the infilling
procedure using kriging techniques (Cowtan &Way, 2014) reduces year-to-year variability and low-frequency
trends, particularly before 1880 (Figure S2). The mismatch between observations and simulations, as well as
reconstructions, points to a basic challenge in representing large-scale spatial temperature patterns.

3.2. Spatiotemporal Covariance

Running correlations reveal sharp deviations particularly in the model simulations and demonstrate that the
above discussed correlations, which are for the most part highly significant, are not stable over time
(Figure 3a). There is no clear pattern indicating that a particular pair of continents shows systematically stron-
ger or weaker correlations (Figure S3). The detected temporal covariance patterns do not change (Figure S4a)
using full continental means (as specified in Table S3); therefore, they appear to be unaffected by the subsam-
pling of the continental fields.

The temporal agreement of the spatial covariance betweenmodeled and reconstructed temperatures is fairly
uniform, particularly since the midfifteenth century (Figure 3a). Prior to the fifteenth century, however, the
running correlations of the reconstructions and models diverge substantially, indicating that in some periods
the proxy reconstructions yield high temperature covariance among the continents while correlations
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between simulated temperatures drop substantially and vice versa. Interestingly, periods of high and low
covariance are also unequal among the models, with only the MPI and GISS simulations showing similar
relationships (Figure S3 and Table S5). The agreement in covariance of tree ring and PAGES2k
reconstructions is generally higher compared to the models (Table S5), except for the seventeenth century
where the tree ring and model patterns cohere well. In this period, both show a simultaneous increase of

(b)

(c)

(d)

(e)

(a)

Figure 3. Effects of volcanic forcing on near-surface temperature averaged over Europe, Asia, North America, and the Arctic. (a) Mean intercontinental running cor-
relations (31 year window, left aligned) for tree ring reconstructions (green), PAGES2k reconstructions (blue; note that this includes Europe, Asia, and Arctic only),
instrumental data (red), and five model simulations (grey; multimodel mean in black; dashed black line represents upper 95% confidence limit of model control runs
as baseline for unforced background covariance). (b) Mean running standard deviation (31 year window, left aligned) of reconstructed, modeled, and instrumental
temperature data. Standard deviations were calculated for each continent and then averaged. (c) Volcanic forcing from Crowley and Unterman (2013), Gao et al.
(2008), and Sigl et al. (2015). (d) Volcanic forcing and (e) reconstructed and modeled temperature anomalies with respect to the five years prior to assumed dates of
the Samalas, putative Kuwae, Huaynaputina, Tambora, and Pinatubo eruptions.
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correlation coefficients and the values are at a similar magnitude (Figure 3a). While PAGES 2k-PMIP3 group
(2015) produced constantly higher correlations with model simulations, compared to the PAGES2k recon-
structions, we cannot ascertain a consistent pattern. The higher model values reported in the literature are
likely affected by the additional detrending (23 year Hamming filter) of the reconstructed and simulated data
(PAGES 2k-PMIP3 group, 2015).

The high coherence periods evident in Figure 3a exceed the background covariance estimated from control
simulations (dashed line in Figure 3a) and coincide with major volcanic eruptions affecting both the recon-
structions and model simulations, as discussed in more detail below. In the midfifteenth century the recon-
structions show the highest correlations, exceeding those derived from the simulations. In subsequent
periods, correlations between the reconstructions increase earlier, already in the late sixteenth century,
compared to the model simulations in which increases start ~1600. The curves then cohere well until the
present, except for the late eighteenth century when the models indicate much larger spatial covariance.
The twentieth century positive trend is mainly caused by the greenhouse gas forcing and associated warm-
ing trend. This fact supports our assumption that large-scale radiative forcings increase temperature covar-
iance between continents. The intercontinental correlation among the instrumental data matches the
reconstructions more closely than the model simulations, a fact that might be connected to the calibration
of the proxies on the instrumental data. Considering the full continental means, however, the covariance
of instrumental and modeled data is almost identical (Figure S4a).

3.3. Role of Forcing

Our findings suggest that large-scale radiative forcing imposes higher spatial covariance on continental scale
temperature records, while more typical internal variability reduces covariance. As mentioned above, the
high covariance periods are induced by volcanic forcing, in both the reconstructed and simulated time series.
Anchukaitis et al. (2017) also connected strong radiative forcing due to volcanism to a common spatial
forcing of tree ring temperature reconstructions. Interpreting the model control run as background variance
(Figures 3a and S5) implies that volcanic eruptions are the dominant radiative forcing over the past millen-
nium, causing spatial covariance shifts in reconstructed and simulated continental temperature records.
The models, however, show on average much more abrupt increases of covariance in response to large
volcanic eruptions, compared to the more smoothed behavior of the tree ring and multiproxy curves
(Figure 3a). These sharp correlation shifts are also missing in the PAGES 2k-PMIP3 group (2015) analysis
because the data were smoothed to emphasize decadal or multidecadal patterns prior to
covariance assessments.

The spikes in the running correlations are caused by abrupt (single-year) and widespread cooling in simu-
lated temperatures that are forced by large volcanic events (Figure 3). In general, the model simulations
display consistently stronger cooling responses compared to the more muted proxy-based reconstructions.
These differences might partly be related to the calibration methods used for reconstruction (Esper et al.,
2016), as well as the subsampling of continental fields, as the standard deviation decreases when considering
full continental mean temperatures. However, the abrupt correlation shift remains in the fully sampled
continental means (Figure S4b).

The CCSMmodel shows the most pronounced response to volcanic forcing including exceptional deviations
in 1214, 1258, 1453, 1600, 1641, 1762, and 1815 (Figure 3b). The MPI and IPSL also respond quite strongly to
volcanic forcing (particularly in 1258 and 1809/1815), while the BCC and GISS models appear to be less
sensitive. Regarding the general pattern of variance changes as well as the level of variance, the IPSL and
GISS simulations seem to be closest to “reality” as reflected by the reconstructions and observations. It must
be noted, however, that a direct comparison of the level of variance is generally limited as simulated data are
free of measurement noise, while proxy data do contain nonclimatic noise that can reduce
temperature covariability.

The most severe deviations in the model simulations are driven by volcanic events, though both the magni-
tude and timing of postvolcanic cooling differ substantially among the models. Part of this difference is
related to the forcing time series used in the models (Figures 3d and 3e). The BCC and CCSM models are
driven with forcing data from Gao et al. (2008), while the GISS and MPI models used the data from
Crowley and Unterman (2013) (Table S2). We here included these two forcing time series (Figures 3d and
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3e) together with the recently developed reconstruction by Sigl et al. (2015). The 1257 Samalas eruption was
detected in all forcing time series (Crowley & Unterman, 2013; Gao et al., 2008; Sigl et al., 2015) as the largest
volcanic event of the past millennium. Consequently, this event produces the strongest cooling in all model
simulations, but the cooling magnitude differs substantially among the models. The CCSM simulation
produces a maximum cooling of �6.5°C 2 years after the eruption (note the differing scales in Figure 3e).
Single grid cells in the CCSM simulation reach �13.5°C post-Samalas cooling exceeding the temperature
range of all the other models by far (Figure S1) and lacking any empirical support (e.g., Guillet et al., 2017).
BCC shows the least cooling among the models and is closest to the temperature response indicated by
the proxy reconstructions.

In other periods, cooling is stronger in the reconstructions, or the annual timing differs among the models.
For the yet unknown and thus still intensively researched putative 1452 Kuwae event (Esper et al., 2017),
the reconstructions, as well as the Gao et al. (2008) and Ammann et al. (2007) forced models, show cooling
in 1453, while the Crowley and Unterman (2013) forced models indicate warming with no sign of cooling
until 1456. The 1600 eruption caused simultaneous cooling in all data sets, even though the models again
show stronger cooling. In the reconstructions, the cooling following the 1815 Tambora eruption was already
started in 1809, following a so far unidentified volcanic event (Cole-Dai et al., 2009; Sigl et al., 2015). The simu-
lated cooling again exceeds the reconstructed postvolcanic cooling. Regarding the 1991 Pinatubo event,
some simulations again overestimate the cooling amplitude, and the tree ring reconstructions are actually
closer to the instrumental data.

Mann et al. (2012) argued that tree rings underestimate volcanic cooling compared to model simulations and
introduced a “missing ring” hypothesis to explain the absence of strong cooling in dendrochronological
reconstructions, particularly following the 1257 eruption. This hypothesis has been repeatedly contradicted
(see Anchukaitis et al., 2012; D’Arrigo et al., 2013; Esper et al., 2015; St. George et al., 2013; Stoffel et al.,
2015; Wilson et al., 2016). Our results indicate the CCSM model, a previous version of which was used in
Mann et al. (2012), overestimates volcanic impact. Atwood et al. (2016) also suggests that the relative contri-
bution of volcanic forcing is not adequately represented in past millennium simulations. Because the dating
of many eruptions also differs among the forcing time series, these discrepancies add to large uncertainties in
evaluating the preinstrumental climate and underlying forcing (Atwood et al., 2016; Esper et al., 2017;
Luterbacher et al., 2016). A common forcing for model simulations will thus help comparisons between
reconstructed and modeled temperatures (Jungclaus et al., 2016), as will changes in the sensitivity of models
to various radiative forcings, including volcanic forcings (e.g., Otto-Bliesner et al., 2016). These continued
improvements in model representations of climatic change and variability may eventually reconcile the
differences that we note.

Our results also indicate that the temporal and spatial responses of the climate system, as well as the
response of proxies to single volcanic events, are still not fully understood (Wilson et al., 2016). We here used
36 tree ring-based temperature reconstructions including 7 records derived from maximum latewood
density (Esper et al., 2016), which is known to contain substantially less biological memory compared to tree
ring width (Büntgen et al., 2015; Esper et al., 2015, 2017; Schneider et al., 2015, 2017). Maximum latewood
density-based temperature reconstructions therefore enable a more accurate estimate of postvolcanic
cooling (Schneider et al., 2015, 2017), and the development of such records at large spatial scales is needed
to improve our understanding of proper estimates of postvolcanic cooling. This will finally help to enhance
our knowledge about the temporal and spatial effects of external radiative forcing and the respective
temperature covariance at larger spatial scales.

4. Conclusions

Large-scale radiative forcing increases spatial covariance of continental scale temperatures. This is an impor-
tant fact to be considered in the combined evaluation of model simulations and proxy-based climate recon-
structions and can help to improve our knowledge of natural forcing factors and climate responses. The
PAGES 2k-PMIP3 group (2015) showed that model simulations contain a higher degree of spatial temperature
covariance at continental scales, compared to the PAGES2k multiproxy reconstructions. Here we show that
this intercontinental temperature covariance is higher in tree ring-only reconstructions compared to the
multiproxy reconstructions, a finding that narrows the gap between proxy- and model-based spatial
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representations. The assessment of temporal covariance changes revealed that periods of high interconti-
nental coherence are mainly driven by large volcanic eruptions. In periods when such events are absent,
the correlation between continental scale temperatures typically drops substantially and in many cases
resides close to 0 in both the proxies as well as model simulations. However, themodel simulations, and espe-
cially the CCSM model, seem to overestimate postvolcanic cooling, particularly after the large eruptions in
1257, 1452, 1600, 1815, and 1991. The impact of particular eruptions is thus imprecisely represented in some
model simulations. Nevertheless, there is also some agreement in the character of the large volcanic
responses in both the proxies and models, despite the background of internal variability, as volcanic forcing
synchronizes temperature variability among continents.
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