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Spectral biases in tree-ring climate proxies
Jörg Franke1,2,3*, David Frank1,3, Christoph C. Raible3,4, Jan Esper5 and Stefan Brönnimann2,3

External forcing and internal dynamics result in climate system
variability ranging from sub-daily weather to multi-centennial
trends and beyond1,2. State-of-the-art palaeoclimatic methods
routinely use hydroclimatic proxies to reconstruct temperature
(for example, refs 3,4), possibly blurring differences in
the variability continuum of temperature and precipitation
before the instrumental period. Here, we assess the spectral
characteristics of temperature and precipitation fluctuations
in observations, model simulations and proxy records across
the globe. We find that whereas an ensemble of different
general circulation models represents patterns captured in
instrumental measurements, such as land–ocean contrasts
and enhanced low-frequency tropical variability, the tree-ring-
dominated proxy collection does not. The observed dominance
of inter-annual precipitation fluctuations is not reflected in
the annually resolved hydroclimatic proxy records. Likewise,
temperature-sensitive proxies overestimate, on average, the
ratio of low- to high-frequency variability. These spectral
biases in the proxy records seem to propagate into multi-
proxy climate reconstructions for which we observe an
overestimation of low-frequency signals. Thus, a proper
representation of the high- to low-frequency spectrum in
proxy records is needed to reduce uncertainties in climate
reconstruction efforts.

Climate variability is driven on all timescales by external forcing
and the internal dynamics of the system5. External forcings range
from pulse-like events such as volcanic eruptions to changes on
geologic timescales due to plate tectonics. Internal dynamics include
rapid atmospheric processes as well as those arising from ocean
convection and ice-sheet dynamics. The total variability can be
divided into stochastic and periodic components ranging from the
diurnal cycle to changes in Earth’s orbit1.

Part of this variability continuum is fingerprinted in
instrumental measurements spanning the past 100–250 years—
a period that is additionally influenced by anthropogenic
greenhouse-gas emissions. To assess pre-instrumental natural
climate variability and changes over longer timescales, proxy
records derived from tree rings, corals, lake sediments, ice cores,
stalagmites or other archives4 are necessary. Climate estimates
derived from these archives contain a substantial fraction of
noise (non-climate relevant information) and may contain mixed
climatic signals (for example, precipitation and temperature6) of a
poorly defined or even variable seasonality7. Temporal resolution
can vary from seasonal to multi-centennial depending on the proxy
type and can even change within one record. Variance artefacts may
exist and thresholds might be reached (Supplementary Fig. S1).
Data treatment required to extract the climate signals, for instance
the removal of age-related trends in tree rings, has to be done
carefully to avoid loss of low-frequency variability8. At the same
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time, biological proxies may have enhanced low-frequency signals
arising from lagged growth processes and responses9. These
characteristics could influence the frequency spectra of proxy
time series and might distort our understanding of high- to
low-frequency climate variability.

To achieve a seamless quantification of climate in the past,
present and future, the true variance across all frequency bands in
the pre-industrial period needs to be properly captured. To deter-
mine whether this is the case, we estimate the variability continuum
in instrumental observations10, the twentieth-century reanalysis11
(20CR),multiple simulations for the pastmillennium12–15 (GCMens,
Supplementary Section S3), annually resolved proxy records of at
least 500 years in length (Supplementary Tables S1 and S2) and
spatially resolved climate reconstructions16,17. Themulti-centennial
climate proxies are split into temperature- and precipitation-
sensitive records by a correlation screening against annual mean
instrumental temperature and precipitation10 closely following the
procedure applied in state-of-the-art climate reconstructions3. We
exclude records if the interpretation of the proxy as temperature-
/precipitation-sensitive made by the original authors does not
agree with the correlation screening results. Fifty-six (128) tem-
perature (precipitation) proxies, mainly tree-ring width (TRW)
and tree-ring density (MXD), pass this screening. This collection
of proxy records is representative for networks commonly aggre-
gated in multi-proxy climate reconstructions of the late Holocene
period3,16,17. We assess the continuum of variability by estimating
the scaling exponent β of the spectral energy P(f )∝ f −β , where f
is the frequency that describes the continuum2. A β-value of zero
corresponds to equal variability across all frequencies—a so-called
white spectrum. β-values greater (smaller) than zero contain in-
creased (reduced) low-frequency variance, and are referred to as
red (blue) spectra.

Comparing instrumental, reanalysis and model spectra over
the longest common frequency range (periods between 2 months
and 100 years), we find close agreement in the representation of
both temperature and precipitation spectra (Fig. 1). Temperature
variability in the 20CR and GCMens is characterized by a strong
land–sea contrast18,19 with higherβ-values over the ocean (Fig. 1d,g;
in both cases calculated for each simulation/ensemble member
separately before averaging; see Methods). Decreasing β-values
towards high latitudes2 are clearly visible in Fig. 1a,d,g. Thermal
inertia of the ocean plays an important role in the land–sea
contrast2, whereas the latitudinal gradient is caused by low intra-
annual variability in the tropical regions. These results are robust
across various grid resolutions (Supplementary Fig. S4) as well
as summer, winter and annual periods (Supplementary Fig. S5),
indicating no seasonal dependence.

Similarly the precipitation data sets broadly agree in
their spectral characteristics (Fig. 1b,e,h). However, relative to
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Figure 1 | Spectral colour maps and distributions. a–c, Spectral colour expressed as β-value for the gridded CRU TS3 temperature and precipitation data
set (a,b), and the distributions of land-alone β-values (c; standardized; Gaussian smoothing kernel). d–i, The same as in a–c for the twentieth-century
reanalysis data sets (d–f) and for the multi-model mean of each simulation’s β-value field (g–i). All β-values are calculated for periods between 2 months
and 100 years.

instrumental data, 20CR is slightly redder and the GCMens are
slightly whiter. The state-of-the-art models used in this study have
largely overcome previous criticisms related to prescribed flux
corrections, challenges in modelling climate modes (for example
El Niño/Southern Oscillation, Atlantic Multidecadal Oscillation)
or missing forcings20,21, yet they may still not faithfully capture all
multi-decadal to centennial climate variability. Small differences in
the spatial patterns should furthermore be interpreted with caution
as many regions lack high-quality precipitation observations.
These discrepancies are all in line with the greater challenges
in understanding hydro-climatic variability22. The generally low
β-values (medians ranging from 0.05 in GCMens to 0.23 in
20CR) as well as the absence of a land–ocean contrast due to the
reduced influences of thermal inertia are robust features of the
precipitation spectra.

Most notably, we find clear differences between the temperature
and precipitation spectra, with temperature variability from all data
sources showing greater low-frequency loadings than precipitation.
Globally aggregated, land-alone β-values of the instrumental
data sets, 20CR and the GCMens are statistically distinguishable
(Fig. 1c,f,i; two-sided Wilcox test, for all cases p < 0.001). This
conclusion is robust for varying frequency ranges, although the
uncertainty for the individual β-values increases when shortening
the frequency range (Supplementary Figs S6–S9).

Given the coherent picture of the climate system’s variability
continuum based on observations, reanalysis and model simula-
tions, we test how well the proxy spectra match these estimates.
Owing to the annual resolution of the proxy data considered, we

calculate β-values between periods of 2 years and 100 years. To
robustly assess β-values across this frequency range, we perform
additional analysis for early instrumental measurements of at least
200 years in length from central Europe23,24 and the model data
extracted for the same region and time period. This data subset
yields similar results to those observed globally in Fig. 1, including
distinct β-value distributions for temperature and precipitation
(Fig. 2c,f). The global compilation of proxy data, in contrast, do
not have the expected and distinguishable temperature and pre-
cipitation β-value distributions (Fig. 2i). Both distributions have a
larger spread and are shifted towards significantly higher β-values,
indicative of an overestimation of low-frequency variability in com-
parison with both observations and model simulations (Fig. 2f,g).
Expected relationships between the proxy spectral characteristics
and their geographic locations were not found (Supplementary
Fig. S10c,d). Furthermore, spatially proximal proxies often differ
substantially in their β-values even if derived from the same
type of archive. Overall, we find that the proxy network poorly
represents the expected characteristics of the climate system in
the frequency domain.

Multiple factors may contribute to systematic spectral bi-
ases of proxies. Precipitation-sensitive proxies might respond
to drought, that is a combination of precipitation, soil mois-
ture and temperature-driven evapotranspiration. It is not ob-
vious what spectrum a proxy that combines precipitation and
temperature information will or should have. The β-values
for drought records are mostly found in between those for
precipitation and temperature (Supplementary Fig. S12). Yet
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Figure 2 | Long instrumental, GCM and proxy spectra. a–c, Spectra of instrumental temperature (red; a), instrumental precipitation (blue; b) and
associated β-value distributions from measurement series at least 200 years in length to allow 2–100-year spectral characterizations (c). d–f, As above
but for GCM models at the instrumental locations. g–i, As above for global proxy data (light shades) and the European subset (dark shades). In i, median
values for the different proxy archives are indicated as a square, MXD; circles, TRW; a diamond, tree-ring δ18O; triangles, ice-core δ18O; and a downtriangle,
documentary data; with filled symbols for the median from n> 20 and open symbols for n< 3.

there might be climatic regimes that would lead to red-
biased spectra such as when precipitation and temperature are
anticorrelated at inter-annual timescales but correlated at multi-
decadal scales.

Furthermore, there is no reason to suspect that the diverse
biological, chemical, physical, interpretational or analytical pro-
cesses that characterize the formation and extraction of proxy
climate information are the same for all proxy records (proxy
type medians in Fig. 2i). Owing to the prevalence of tree-ring
proxies in our data sets, we could test the spectral characteristics
associated with the different types of proxy archive only for TRW
and MXD temperature proxies (Supplementary Fig. S11). The
TRW records generally fall towards the upper end of the proxy
β-distribution, suggesting strong red biases (median β of 0.73),
whereas the MXD records fall towards the lower end of the range
expected for temperature (median β of 0.34). Biological proxies
such as tree rings can integrate climate conditions over more
than one year9, providing a mechanistic explanation for the red
bias in TRW. Mechanistic understanding of the MXD parameter
is less advanced, but given the necessary removal of age-related
trends, the proper representation of high- and low-frequency
variability remains a challenge in all types of tree-ring archive.
These differences between the TRW and MXD data suggest that
each proxy archive and parameter may have their own spectral
biases and/or abilities to faithfully record the continuum of climate
variability. Given that TRW records are the most commonly used
proxy archive for late Holocene climate reconstructions3,4, our
findings seem relevant for much of our understanding of the
pre-industrial to industrial transition period. As additional proxy

archives (for example, speleothems, corals, ice cores, documen-
tary data) play an increasingly dominant role in newer climate
reconstructions their spectra will similarly require assessment of
their spectral fidelity.

The spectral characteristics of climate proxies may be further
modified by multi-proxy reconstruction techniques for a couple of
reasons. First, the temporal evolution reconstructed for a particular
location is a linear combination of multiple proxies. Second,
on the basis of pseudo-proxy experiments25,26, reconstruction
methods tend to cause a blue bias because they underestimate
low-frequency variability. To investigate the extent to which
biases in proxies may extend into multi-proxy compilations, we
calculated β-values for annually resolved, proxy-based climate-
field reconstructions of temperature17 and precipitation16. The
precipitation reconstruction has on average a whiter spectrum
than the temperature reconstruction. Compared with observations,
however, reconstructions for both variables (Fig. 3) are biased
red, which suggests the propagation of the proxy bias into
reconstructions. Similar evidence exists for other climate field
reconstructions (Supplementary Fig. S13). More generally, the
red bias of precipitation records and their use in temperature
reconstructions3 is worrying owing to the possibility that low-
frequency proxy noise is responsible for spectral similarities27.
These findings suggest that the understanding of high- to low-
frequency temperature variability over the past millenniummay be
more limited than is widely assumed.

Our study gives evidence that attention to the spectral
characteristics of the original proxy time series is needed. Proxies
suffering from doubtful low-frequency signals, low quality, a
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Figure 3 | Spectral colour of climate reconstructions. a,b, Mean spectral
colour of the CRU TS3 temperature data set (a) and the annually resolved
southern South American temperature reconstruction of ref. 17 (b).
c,d, The same, for the CRU TS3 precipitation data set (c) and the
precipitation reconstruction of ref. 16 (d). Both examples suggest that the
spectral bias identified in proxy records propagates into climate
reconstructions.

poor mechanistic understanding and further uncertainties such
as variance or resolution changes over time, thresholds or gaps
should be treated with caution. Precipitation-sensitive proxies
should not be used in temperature reconstructions, nor vice
versa, because of expected differences in their low-frequency
variability28. Climate reconstructions using forward models in
data assimilation approaches29 offer a promising approach for
handling mixed signals of different climate variables in proxies.
In any case, reduced focus on the quantity of proxy records
and increased focus on the quality is expected to facilitate an
improved and seamless understanding of pre-anthropogenic to
future climate variability.

Methods
We compiled a global network of proxy archives, an ensemble of GCM
simulations and instrumental measurements fully representative of data sets
used to understand past, present and future climate. Climate time series were
transformed into anomalies to exclude the annual cycle, and then linearly
detrended and standardized (mean of zero and a standard deviation of one).
Thomson’s multitaper method was applied with three windows to transform
records from the time to the frequency domain30. To evaluate the spectral
continuum, we followed methods established in ref. 2. We calculated the
so-called β-values as a measure of spectral colour by fitting a function through
the spectrum. This function can be described with a power law: P(f )∝ f −β ,
where P is the spectral energy, f is the frequency and β is the power-law
exponent. Consequently, positive (negative) β-values indicate red (blue)
spectra and a zero value a white spectrum. The slope of a linear least-squares
fit between the log-frequency and log-power-density estimates represents the
β-value estimates. We binned and averaged the spectra into equally spaced
log-frequency intervals before the least-squares fitting to prevent overweighting of
high-frequency variability.

For the model simulations and the twentieth-century reanalysis maps of
β-values (Fig. 1), we calculated β for each individual simulation/ensemblemember.
Then, all ensemble members of a model were averaged to a model mean. Finally,
all models were averaged to weight them equally independent of the number
of available simulations.

Annually resolved, multi-centennial proxies were split into temperature- and
precipitation-sensitive records by a two-step screening procedure: a state-of-the-art
correlation screening3 was applied to select records that correlate significantly
(one-sided p< 0.1 significance threshold) with annual mean instrumental
temperature/precipitation (see Supplementary Section S11) of the corresponding

grid cell in the CRU TS3 data set10. Owing to first-order autocorrelation in many
proxy records we used an effective sample size:

Sample sizeeffective= Sample size
(1− first order autocorr. coeff.)
(1+ first order autocorr. coeff.)

The resulting reduced degrees of freedom are used in the calculation of the
significance threshold. We verified whether the proxy records are interpreted
as temperature/precipitation-sensitive by the authors of the corresponding
publication. Data derived from the International Tree-Ring Data Base, without
direct associations to published process-based understanding of the climatic
sensitivity, were screened only for correlation as trees can respond to both
temperature and precipitation depending on the site environment.
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